Journal of Electronic Materials

, Volume 48, Issue 5, pp 3157–3168 | Cite as

Direct Ink Writing of Flexible Electronics on Paper Substrate with Graphene/Polypyrrole/Carbon Black Ink

  • Yiming Chen
  • Lijie Zhou
  • Jing Wei
  • Changtong Mei
  • Shaohua Jiang
  • Mingzhu Pan
  • Changyan XuEmail author


Direct ink writing is an interesting and attractive method to replace traditional fabrication techniques such as etching, milling, and lithography for flexible electronics because of its simple process, low cost, green nature, and good prospects for development and application. In this work, graphene/polypyrrole (G/P) binary conductive material was prepared by in situ polymerization of pyrrole monomer and graphene oxide with vitamin C (VC) as green reducing agent. Then graphene/polypyrrole/carbon black (G/P/CB) conductive ink was fabricated using a mixture of alcohol, ethylene glycol, glycerol, and deionized water as solvent. Electronic circuits were obtained by directly writing the prepared conductive ink on flexible substrate, high-gloss photographic paper. When the loading of G/P binary conductive material, carbon black, ethanol, ethylene glycol, glycerol, sodium carboxymethyl cellulose, and deionized water was 54 mg, 546 mg, 12 mL, 30 mL, 30 mL, 480 mg, and 51 mL, the electrical conductivity, solid content, contact angle, and viscosity was 146.3 μS/cm, 4.3%, 34.6°, and 35.8 mPa s, respectively. The ink exhibited excellent water and acid resistance, and the electronic circuit written using the ink showed good uniformity and mechanical flexibility. Scanning electron microscopy evaluation of cross-sections of G/P/CB ink lines on photographic paper and light-emitting diode experiments confirmed that the three-dimensional flexible paper-based conductive circuits containing 9 wt.% G/P formed a complete electrical network.


Graphene/polypyrrole/carbon black ternary conductive materials conductive ink direct ink writing flexible electronic circuit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was sponsored by the National Natural Science Foundation of China (Grant No. 31670556) and Postgraduate Research and Practice Innovation Program of Jiangsu Province.


  1. 1.
    S. Kim, T.G. Yun, C. Kang, M. Son, J. Kang, I. Kim, H. Lee, C. An, and B. Hwang, Mater. Des. 151, 1 (2018).CrossRefGoogle Scholar
  2. 2.
    S.L. Merilampi, T. Bjorninen, A. Vuorimaki, L. Ukkonen, P. Ruuskanen, and L. Sydanheimo, Proc. IEEE 98, 1610 (2010).CrossRefGoogle Scholar
  3. 3.
    H.M. Nur, J.H. Song, J.R.G. Evans, and M.J. Edirisinghe, J. Mater. Sci.: Mater. Electron. 13, 213 (2002).Google Scholar
  4. 4.
    Y. Zhang, P. Zhu, G. Li, T. Zhao, X. Fu, R. Sun, F. Zhou, and C.P. Wong, ACS Appl. Mater. Interfaces 6, 560 (2014).CrossRefGoogle Scholar
  5. 5.
    C. Cheng, J. Li, T. Shi, X. Yu, J. Fan, G. Liao, X. Li, S. Cheng, Y. Zhong, and Z. Tang, J. Mater. Sci.: Mater. Electron. 28, 13556 (2017).Google Scholar
  6. 6.
    J.M. Petroni, B.G. Lucca, and V.S. Ferreira, Anal. Chim. Acta 954, 88 (2016).CrossRefGoogle Scholar
  7. 7.
    W. Shen, X. Zhang, Q. Huang, Q. Xu, and W. Song, Nanoscale 6, 1622 (2014).CrossRefGoogle Scholar
  8. 8.
    J.H. Yu, K.T. Kang, J.Y. Hwang, S.H. Lee, and H. Kang, Int. J. Precis. Eng. Manuf. 15, 1051 (2014).CrossRefGoogle Scholar
  9. 9.
    A.K. Venkata, K.R.R. Venkata, P.S. Karthik, and P.S. Surya, RSC Adv. 5, 77760 (2015).CrossRefGoogle Scholar
  10. 10.
    W. Wu, S. Yang, S. Zhang, H. Zhang, and C. Jiang, J. Colloid. Interface Sci. 427, 15 (2014).CrossRefGoogle Scholar
  11. 11.
    K.S. Novoselov, A.K. Geim, S.V. Morozow, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).CrossRefGoogle Scholar
  12. 12.
    A. Bello, O. Fashedemi, J.N. Lekitima, M. Fabiane, A.D. Dodoo, K. Ozoemena, Y. Gogotsi, A. Johnson, and N. Manyala, AIP Adv. 3, 082118 (2013).CrossRefGoogle Scholar
  13. 13.
    T. Chen and L. Dai, Mater. Today 16, 272 (2013).CrossRefGoogle Scholar
  14. 14.
    A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
  15. 15.
    E.B. Secor and M.C. Hersam, J. Phys. Chem. Lett. 6, 620 (2015).CrossRefGoogle Scholar
  16. 16.
    A.A. Green and M.C. Hersam, J. Phys. Chem. Lett. 1, 544 (2010).CrossRefGoogle Scholar
  17. 17.
    F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, D. Chu, and A.C. Ferrari, ACS Nano 6, 2992 (2012).CrossRefGoogle Scholar
  18. 18.
    D.J. Finn, M. Lotya, G. Cunningham, R.J. Smith, D. McCloskey, J.F. Donegan, and J.N. Coleman, J. Mater. Chem. C 2, 925 (2014).CrossRefGoogle Scholar
  19. 19.
    A.D. Klosterman, L. Li, and J.E. Morris, IEEE Trans. Compon. Pack. Manuf. Technol. A 21, 23 (1998).CrossRefGoogle Scholar
  20. 20.
    Y. Wang, J.W. Shan, and G.J. Weng, J. Appl. Phys. 118, 065101 (2015).CrossRefGoogle Scholar
  21. 21.
    A.Y. Sham and S.M. Notley, J. Colloid Interface Sci. 469, 196 (2016).CrossRefGoogle Scholar
  22. 22.
    A. Ji, Y. Chen, X. Wang, and C. Xu, J. Mater. Sci.: Mater. Electron. 29, 13032 (2018).Google Scholar
  23. 23.
    Y. Li, X. Lu, F. Su, Y. He, B. Li, Q. Yang, and F. Kang, Carbon 93, 1082 (2015).CrossRefGoogle Scholar
  24. 24.
    J.W. Han, B. Kim, J. Li, and M. Meyyappan, Mater. Res. Bull. 50, 249 (2014).CrossRefGoogle Scholar
  25. 25.
    S. Shukla, K. Domican, K. Karan, S. Bhattacharjee, and M. Secanell, Electrochim. Acta 156, 289 (2015).CrossRefGoogle Scholar
  26. 26.
    P. Sutter, Nat. Mater. 8, 171 (2009).CrossRefGoogle Scholar
  27. 27.
    P. Liu, Y. Huang, and L. Wang, Mater. Lett. 91, 125 (2013).CrossRefGoogle Scholar
  28. 28.
    T.A. Pham, J.S. Kim, J.S. Kim, and Y.T. Jeong, Colloids Surf. A 384, 543 (2011).CrossRefGoogle Scholar
  29. 29.
    Y. Wang, Z. Shi, and J. Yin, ACS Appl. Mater. Interfaces 3, 1127 (2011).CrossRefGoogle Scholar
  30. 30.
    Z. Yang, Y. Huang, D. Ji, G. Xiong, H. Luo, and Y. Wan, Ceram. Int. 43, 10905 (2017).CrossRefGoogle Scholar
  31. 31.
    S. Dubin, S. Gilje, K. Wang, V.C. Tung, K. Cha, A.S. Hall, J. Farrar, R. Varshneya, Y. Yang, and R.B. Kaner, ACS Nano 4, 3845 (2010).CrossRefGoogle Scholar
  32. 32.
    J. Gao, F. Liu, Y. Liu, N. Ma, Z. Wang, and X. Zhang, Chem. Mater. 22, 2213 (2010).CrossRefGoogle Scholar
  33. 33.
    D. He, L. Shen, X. Zhang, Y. Wang, N. Bao, and H.H. Kung, AIChE J. 60, 2757 (2014).CrossRefGoogle Scholar
  34. 34.
    Z. Zhang, Q. Li, L. Yu, Z. Cui, L. Zhang, and G.A. Bowmaker, Macromolecules 44, 4610 (2011).CrossRefGoogle Scholar
  35. 35.
    J. Thunberg, T. Kalogeropoulos, V. Kuzmenko, D. Hägg, S. Johannesson, G. Westman, and P. Gatenholm, Cellulose 22, 1459 (2015).CrossRefGoogle Scholar
  36. 36.
    H. Zhao, L. Hou, and Y. Lu, Chem. Eng. J. 297, 170 (2016).CrossRefGoogle Scholar
  37. 37.
    J.G. Ayenimo and S.B. Adeloju, Food Chem. 229, 127 (2017).CrossRefGoogle Scholar
  38. 38.
    S. Malinowska, M. Gniadek, T. Rapecki, E. Kurek, Z. Stojek, and M. Donten, J. Solid State Electrochem. 18, 3049 (2014).CrossRefGoogle Scholar
  39. 39.
    H. Kashani, L. Chen, Y. Ito, J. Han, A. Hirata, and M. Chen, Nano Energy 19, 391 (2016).CrossRefGoogle Scholar
  40. 40.
    A.L. Correa-Borroel, S. Gutierrez, E. Arce, R. Cabrera-Sierra, and P. Herrasti, J. Appl. Electrochem. 39, 2385 (2009).CrossRefGoogle Scholar
  41. 41.
    J. Wang, X. Li, X. Du, J. Wang, H. Ma, and X. Jing, Chem. Pap. 71, 293 (2017).CrossRefGoogle Scholar
  42. 42.
    S. Peng, L. Tian, J. Liang, S.G. Mhaisalkar, and S. Ramakrishna, ACS Appl. Mater. Interfaces 4, 397 (2012).CrossRefGoogle Scholar
  43. 43.
    Y. Liu, H. Wang, J. Zhou, L. Bian, E. Zhu, J. Hai, J. Tang, and W. Tang, Electrochim. Acta 112, 44 (2013).CrossRefGoogle Scholar
  44. 44.
    L. Almashat, K. Shin, K. Kalantarzadeh, J.D. Plessis, S.H. Han, R.W. Kojima, R.B. Kaner, D. Li, X. Gou, S.J. Ippolito, and W. Wlodarski, J. Phys. Chem. C 114, 16168 (2010).CrossRefGoogle Scholar
  45. 45.
    S. William, J. Hummers, and E.O. Richard, J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
  46. 46.
    J. Wang, X. Wang, C. Xu, M. Zhang, and X. Shang, Polym. Int. 60, 816 (2011).CrossRefGoogle Scholar
  47. 47.
    Standardization Administration of the People’s Republic of China, Determination of adhesive non-volatile content: GB/T 2793-1995, Beijing: China. Standards. Press. (2004) (in Chinese).Google Scholar
  48. 48.
    Standardization Administration of the People’s Republic of China, Printing Technology-Determination of resistance to various reagents for printed materials and printing inks: GB/T 18724-2008, Beijing: China, Standards, Press, (2009) (in Chinese).Google Scholar
  49. 49.
    E.Y. Choi, T.H. Han, J. Hong, J.E. Kim, S.H. Lee, H.W. Kim, and S.O. Kim, J. Mater. Chem. 20, 1907 (2010).CrossRefGoogle Scholar
  50. 50.
    H. Fan, L. Wang, and K. Zhao, Biomacromolecules 11, 2345 (2010).CrossRefGoogle Scholar
  51. 51.
    G. Wu, X. Wang, N. Guan, and L. Li, Appl. Catal. B 136, 177 (2013).CrossRefGoogle Scholar
  52. 52.
    J.H. Park, J.M. Ko, O.O. Park, and D.W. Kim, J. Power Sources 105, 20 (2002).CrossRefGoogle Scholar
  53. 53.
    W. Wang, Q. Hao, W. Lei, X. Xia, and X. Wang, RSC Adv. 2, 10268 (2012).CrossRefGoogle Scholar
  54. 54.
    I. Dolamic, C. Gautier, J. Boudon, N. Shalkevich, and T. Bürgi, J. Phys. Chem. C 112, 5816 (2008).CrossRefGoogle Scholar
  55. 55.
    M. Romagnoli, M.L. Gualtieri, M. Cannio, F. Barbieri, and R. Giovanardi, Mater. Chem. Phys. 182, 263 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Yiming Chen
    • 1
  • Lijie Zhou
    • 1
  • Jing Wei
    • 1
  • Changtong Mei
    • 1
  • Shaohua Jiang
    • 1
  • Mingzhu Pan
    • 1
  • Changyan Xu
    • 1
    Email author
  1. 1.College of Materials Science and EngineeringNanjing Forestry UniversityJiangsuChina

Personalised recommendations