Journal of Electronic Materials

, Volume 48, Issue 5, pp 3194–3207 | Cite as

Solvothermal Synthesis of Cu2SnSe3 Nanocrystals Using Elemental Precursors: Influence of Different Solvents on Growth and Morphology

  • M. Burhanuz Zaman
  • Tarun Chandel
  • Rajaram PoollaEmail author


Low cost earth abundant absorber materials are set to play a major role in future generation thin film solar cell technologies. Here, we have utilized a facile approach of dissolving elemental precursors, viz copper, tin and selenium, to synthesize earth abundant Cu2SnSe3 (CTSe) nano-crystals using the solvothermal method. All the metallic precursors were made to react with a mixture of thioglycolic acid and methylamine, and the reactants were dissolved in three different solvents—distilled water, ethylene glycol and oleic acid. The influence of the solvents on the structural, morphological and optical properties of the nano-crystalline CTSe particles was studied. X-ray diffraction and Raman studies reveal that the CTSe nanocrystals grow in the cubic phase with a lattice parameter ∼ 5.6 Å. FESEM results reveal different morphologies including nanoflakes and nano-particles depending on the solvent. Selected area electron diffraction patterns confirm the crystalline nature of the products. Optical properties show that the optical gap of the nanocrystals is around 1.32–1.45 eV, which is in the band gap range reported in the literature and is optimum for solar cell applications. The photocatalytic activity of the CTSe nanocrystals was demonstrated by using the material for the degradation of methylene blue dye in the presence of UV–visible light. The results confirm that the CTSe nanocrystals exhibit good photocatalytic response, the best activity being seen in samples grown from water.


Cu2SnSe3 semiconductor solvothermal method nanocrystals x-ray diffraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are thankful to IIC-IIT Roorkee for providing the EDAX, FESEM and XPS facilities, the University of Hyderabad for the Raman studies and Center for Nanosciences and Nanotechnology, IIT Kanpur for electrical characterization. We are also thankful to the CIF, Jiwaji University Gwalior for providing XRD and TEM facilities.


  1. 1.
    M.A. Green, K. Emery, Y. Hisikawa, W. Warta, and E.D. Dunlop, Prog. Photovolt: Res. Appl. 23, 1 (2015).CrossRefGoogle Scholar
  2. 2.
    T. Chandel, V. Thakur, M.B. Zaman, S.K. Dwivedi, and P. Rajaram, Mater. Lett. 212, 279 (2018).CrossRefGoogle Scholar
  3. 3.
    A. Nagaoka, T. Masuda, S. Yasui, T. Taniyama, and Y. Nose, Appl. Phys. Express 11, 051203 (2018).CrossRefGoogle Scholar
  4. 4.
    T. Chandel, M.B. Zaman, N. Basu, J. Lahiri, and R. Poolla, Physica B Condens Matter. 545, 262 (2018).CrossRefGoogle Scholar
  5. 5.
    Z. Han, N. Li, A. Shi, H. Wang, F. Ma, Y. Lv, and R. Wu, Nanoscale Res. Lett. 13, 7 (2018).CrossRefGoogle Scholar
  6. 6.
    N. Kattan, B. Hou, D.J. Fermín, and D. Cherns, Appl. Mater. Today 1, 52 (2015).CrossRefGoogle Scholar
  7. 7.
    E. Kask, T. Raadik, M. Grossberg, R. Josepson, and J. Krustok, Energy Proced. 10, 261 (2011).CrossRefGoogle Scholar
  8. 8.
    P. Bais, M.T. Caldes, M. Paris, C.G. Deudon, P. Fertey, B. Domengès, and A. Lafond, Inorg. Chem. 56, 11779 (2017).CrossRefGoogle Scholar
  9. 9.
    J. Wang, A. Singh, P. Liu, S. Singh, C. Coughlan, Y. Guo, and K.M. Ryan, J. Am. Chem. Soc. 135, 7835 (2013).CrossRefGoogle Scholar
  10. 10.
    J. Wang, P. Liu, C.C. Seaton, and K.M. Ryan, J. Am. Chem. Soc. 136, 7954 (2014).CrossRefGoogle Scholar
  11. 11.
    J. Wang and K.M. Ryan, CrystEngComm 18, 3161 (2016).CrossRefGoogle Scholar
  12. 12.
    A. Tyagi, A.Y. Shah, G. Kedarnath, A. Wadawale, V. Singh, D. Tyagi, C.A. Betty, C. Lal, and V.K. Jain, J. Mater. Sci.: Mater. Electron. 29, 8937 (2018).Google Scholar
  13. 13.
    G. Marcano, C. Rincon, L.M. de Chalbaud, D.B. Bracho, and G.S. Perez, J. Appl. Phys. 90, 1847 (2001).CrossRefGoogle Scholar
  14. 14.
    P. Lee, S. Shei, E. Hsu, and S. Chang, Mater. Lett. 102, 120 (2013).CrossRefGoogle Scholar
  15. 15.
    M. Ibanez, D. Cadavid, U. Anselmi-Tamburini, R. Zamani, S. Gorsse, W. Li, A.M. Lopez, J.R. Morante, J. Arbiol, and A. Cabot, J. Mater. Chem. A 1, 1421 (2013).CrossRefGoogle Scholar
  16. 16.
    D. Zhao, X. Wang, and D. Wu, Crystals 7, 71 (2017).CrossRefGoogle Scholar
  17. 17.
    J. Ning, D. Wu, and D. Zhao, Appl. Sci. 7, 1043 (2017).CrossRefGoogle Scholar
  18. 18.
    X. Shi, L. Xi, J. Fan, W. Zhang, and L. Chen, J. Chem. Mater. 22, 6029 (2010).CrossRefGoogle Scholar
  19. 19.
    G. Liu, K. Chen, J. Li, Y. Li, M. Zhou, and L. Li, J. Eur. Ceram. Soc. 36, 1407 (2016).CrossRefGoogle Scholar
  20. 20.
    Z. Ge, J.R. Salvador, and G.S. Nolas, J. Inorg. Chem. 53, 4445 (2014).CrossRefGoogle Scholar
  21. 21.
    Z. Lei, Q. Ying-Huai, Z. Yu-Long, G. Xiu-Quan, S. Duan-Ming, and S. Chang-Bin, Acta Phys. Chim. Sin. 29, 2339 (2013).Google Scholar
  22. 22.
    Y. Yang, X. Kang, L. Huang, S. Wei, and D. Pan, J. Power Sour. 313, 15 (2016).CrossRefGoogle Scholar
  23. 23.
    Q. Liang, Eur. J. Inorg. Chem. 2016, 3634 (2016).CrossRefGoogle Scholar
  24. 24.
    C. Wang, S. Shei, S. Chang, and I.E.E.E. Trans, Nanotechnology 14, 5 (2015).Google Scholar
  25. 25.
    M.D. Regulacio, C. Ye, S.H. Lim, M. Bosman, E. Ye, S. Chen, Q.H. Xu, and M.Y. Han, J. Chem. Eur. 18, 3127 (2012).CrossRefGoogle Scholar
  26. 26.
    J. Ghijsen, L.H. Tjeng, J. van Elp, H. Eskes, J. Westerink, and G.A. Sawatzky, Phys. Rev. B: Condens. Matter 38, 16 (1988).CrossRefGoogle Scholar
  27. 27.
    G. Marcano, C. Rincon, S.A. Lopez, G.S. Perez, J.L. Herrera-Pérez, J.G. Mendoza-Alvarez, and P. Rodriguez, Solid State Commun. 151, 84 (2011).CrossRefGoogle Scholar
  28. 28.
    P.A. Fernandes, M.G. Sousa, P.M.P. Salome, J.P. Leitaoa, and A.F. da Cunha, CrystEngComm 15, 10278 (2013).CrossRefGoogle Scholar
  29. 29.
    T. Tanaka, T. Sueishi, K. Saito, Q. Guo, M. Nishio, K.M. Yu, and W. Walukiewicz, J. Appl. Phys. 111, 053522 (2012).CrossRefGoogle Scholar
  30. 30.
    S. Yin, S. Akita, M. Shinozaki, R. Li, and T. Sato, J. Mater. Sci. 43, 2234 (2008).CrossRefGoogle Scholar
  31. 31.
    P. Kush, K. Deori, A. Kumar, and S. Deka, J. Mater. Chem. A 3, 8098 (2015).CrossRefGoogle Scholar
  32. 32.
    M.B. Zaman, T. Chandel, and R. Poolla, Mater. Res. Express 6, 025004 (2019).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Studies in PhysicsJiwaji UniversityGwaliorIndia

Personalised recommendations