A First Principle Study of Graphene/Metal-Oxides as Nano-Composite Electrode Materials for Supercapacitors


The present study is about diamond shaped clusters (quantum dots) of CuO and Fe2O3, which are adsorbed physically on graphene substrates to develop electrode materials for supercapacitor applications. Density functional theory (DFT) calculations based on the generalized gradient approximation, of Perdew, Burke and Ernzerhof, along with a hybrid functional have been performed to investigate formation energy, electronic structure parameters and isosurface electronic charge density of CuO/graphene and Fe2O3/graphene composite systems. The calculated values of formation energy for CuO/graphene and Fe2O3/graphene composite systems are 0.14 eV and 3.7 eV, respectively. Isosurface electronic charge density calculations depict the charge transfer mechanism between cluster structure and the graphene substrate. Electronic properties and isosurface electronic charge density results confirm more conducting behavior of CuO/graphene in comparison with the Fe2O3/graphene composite system. From this DFT study, it is inferred that CuO/graphene provides an extra scaffold for electrochemical performance.

This is a preview of subscription content, access via your institution.


  1. 1.

    G. Wang, L. Zhang, and J. Zhang, Chem. Soc. Rev. 41, 797 (2012).

    Article  Google Scholar 

  2. 2.

    X. Lu, H. Dou, B. Gao, C. Yuan, S. Yang, L. Hao, L. Shen, and X. Zhang, ElectrochimicaActa 56, 5115 (2011).

    Article  Google Scholar 

  3. 3.

    V.O. Ozcelik and S. Ciraci, Cond-mat.mes-hall. 1, 1 (2013).

    Google Scholar 

  4. 4.

    R.B. Rakhi, W. Chen, D. Cha, and H.N. Alshareef, J. Mater. Chem. 21, 16197 (2011).

    Article  Google Scholar 

  5. 5.

    L.L. Zhang, R. Zhou, and X.S. Zhao, J. Mater. Chem. 20, 5983 (2010).

    Article  Google Scholar 

  6. 6.

    C. Yuan, H.B. Wu, Y. Xie, and X.W. Lou, Angew. Chem. Int. Ed. 53, 1488 (2014).

    Article  Google Scholar 

  7. 7.

    H. Jiang, P.S. Lee, and C. Li, Enerey Environ. Sci. 6, 41 (2013).

    Article  Google Scholar 

  8. 8.

    R. Ramachandran, V. Mani, S.M. Chen, R. Saraswathi, and B.S. Lou, Int. J. Electrochem. Sci. 8, 11680 (2013).

    Google Scholar 

  9. 9.

    R. Suresh, K. Tamilarasan, and D.S. Vadivu, J. Ovonic Res. 12, 215 (2016).

    Google Scholar 

  10. 10.

    Q. Ke, C. Guan, X. Zhang, M. Zheng, Y.W. Zhang, Y.Q. Cai, H. Zhang, and J. Wang, Adv. Mater. 29, 1604164 (2017).

    Article  Google Scholar 

  11. 11.

    Y.X. Zhang, M. Huang, F. Li, and Z.Q. Wen, Int. J. Electrochem. Sci. 8, 8645 (2013).

    Google Scholar 

  12. 12.

    G. Xiong, K.P.S.S. Hembrama, R.G. Reifenberger, and T.S. Fisher, J. Power Sources 227, 254 (2013).

    Article  Google Scholar 

  13. 13.

    Y. Fan, L.P. Fang, and Y.Z. Juan, Ionics 21, 185 (2015).

    Article  Google Scholar 

  14. 14.

    Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, and R.S. Ruoff, Science 332, 1537 (2011).

    Article  Google Scholar 

  15. 15.

    K. Qingqing and J. Wang, J. Materiomics 2, 37 (2016).

    Article  Google Scholar 

  16. 16.

    D. Tahir and S. Tougaard, J. Phys. Condens. Matter 24, 175002 (2012).

    Article  Google Scholar 

  17. 17.

    B. Zhao, P. Liu, H. Zhuang, Z. Jiao, T. Fang, W.W. Xu, B. Lu, and Y. Jiang, J. Mater. Chem. A 1, 367 (2013).

    Article  Google Scholar 

  18. 18.

    Y.J. Mai, X.L. Wang, J.Y. Xiang, Y.Q. Qiao, D. Zhang, C.D. Gu, and J.P. Tu, Electrochimica Acta 56, 2306 (2011).

    Article  Google Scholar 

  19. 19.

    X. Zhang, J. Zhou, H. Song, X. Chen, Y.V. Fedoseeva, A.V. Okotrub, and L.G. Bulusheva, A.C.S. Appl. Mater. Inter. 6, 17236 (2014).

    Article  Google Scholar 

  20. 20.

    A.K. Rai, L.T. Anh, J. Gim, V. Mathew, J. Kang, B.J. Paul, N.K. Singh, J. Song, and J. Kim, J. of Power Sources. 244, 435 (2013).

    Article  Google Scholar 

  21. 21.

    R. Suresh, K. Tamilarasan, and D. Senthilvadivu, Inter. J. Sci. Eng. Tech. Res. 6, 2278 (2017).

    Google Scholar 

  22. 22.

    Q. Pan, K. Huang, S. Ni, F. Yang, S. Lin, and D. He, J. Phys. D Appl. Phys. 42, 015417 (2009).

    Article  Google Scholar 

  23. 23.

    W.B.I. Jr and S.U.M. Khan, Elect. Solid-State Lett. 9, G144 (2006).

    Article  Google Scholar 

  24. 24.

    Y. NuLi, P. Zhang, Z. Guo, and H. Liua, Elect. Soc. 155, A196 (2008).

    Article  Google Scholar 

  25. 25.

    X. Liu, T. Chen, H. Chu, L. Niu, Z. Sun, L. Pan, and C.Q. Sun, Electrochimica Acta 166, 12 (2015).

    Article  Google Scholar 

  26. 26.

    M. Yang, K.G. Lee, S.J. Lee, S.B. Lee, Y.K. Han, B.G. Choi, and A.C.S. Appl, Mater. Inter. 7, 22364 (2015).

    Article  Google Scholar 

  27. 27.

    G. Kresse and J. Furthmuller, Phys. Rev. B. 54, 11169 (1996).

    Article  Google Scholar 

  28. 28.

    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  29. 29.

    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  30. 30.

    G. Kresse and J. Hafner, Phys. Rev. B. 47, 558 (1993).

    Article  Google Scholar 

  31. 31.

    G. Kresse and D. Joubert, Phys. Rev. B. 59, 1758 (1999).

    Article  Google Scholar 

  32. 32.

    Y. Cai, G. Zhang, and Y.W. Zhang, J. Phys. Chem. C 119, 13929 (2015).

    Article  Google Scholar 

  33. 33.

    M. Firdos, F. Hussain, M. Imran, M. Ismail, A.M. Rana, M.A. Javid, A. Majid, R.M. Arif Khalil, and H. Ullah, Mater. Res. Express 4, 106301 (2017).

    Article  Google Scholar 

  34. 34.

    Y.Q. Cai, Q. Ke, G. Zhang, B.I. Yakobson, and Y.W. Zhang, J. Am. Chem. Soc. 138, 10199 (2016).

    Article  Google Scholar 

  35. 35.

    A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, and G.E. Scuseria, J. Chem. Phys. 125, 224106 (2006).

    Article  Google Scholar 

  36. 36.

    H.J. Monkhorst and J.D. Pack, Phys. Rev. B. 13, 5188 (1976).

    Article  Google Scholar 

  37. 37.

    J.D. Pack and H.J. Monkhorst, Phys. Rev. B. 13, 1748 (1977).

    Article  Google Scholar 

  38. 38.

    Y.Q. Cai, Q. Ke, G. Zhang, Y.P. Feng, and B. Vivek, Adv. Funct. Mater. 25, 2230 (2015).

    Article  Google Scholar 

  39. 39.

    M. Ismail, E. Ahmed, A.M. Rana, F. Hussain, I. Talib, M.Y. Nadeem, D. Panda, N.A. Shah, and A.C.S. Appl, Mater. Inter. 8, 6127 (2016).

    Article  Google Scholar 

  40. 40.

    F. Hussain, M. Imran, A.M. Rana, R.M. Arif Khalil, E.A. Khera, S. Kiran, M.A. Javid, M.A. Sattar, and M. Ismail, Appl. Nanosci. 8, 839 (2018).

    Article  Google Scholar 

  41. 41.

    N.T. Yu, B. Benko, E.A. Kerr, and K. Gersonde, Proc. Natl. Acad. Sci. USA 81, 5106 (1984).

    Article  Google Scholar 

  42. 42.

    C. Franchini, C.X. Qiu, and R. Podloucky, J. Phys. Condens. Matter 23, 045004 (2010).

    Article  Google Scholar 

  43. 43.

    D. Xu, J. Zhao, and X. Wang, J. Nano Part. Res. 15, 1 (2013).

    Google Scholar 

  44. 44.

    H. Zhou, Y. Yokoi, H. Tamura, S. Takami, M. Kubo, and A. Miyamoto, Jpn. J. Appl. Phys. 40, 2830 (2001).

    Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Muhammad Imran or R. M. Arif Khalil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hussain, F., Imran, M., Rasheed, U. et al. A First Principle Study of Graphene/Metal-Oxides as Nano-Composite Electrode Materials for Supercapacitors. Journal of Elec Materi 48, 2343–2349 (2019). https://doi.org/10.1007/s11664-019-07064-2

Download citation


  • DFT
  • CuO/graphene
  • supercapacitor
  • electronic properties
  • structural parameters