Skip to main content
Log in

Demonstration of InAlSb MWIR Detector for High Operation Temperature Application

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper reports the growth and characterization of InAlSb photodiodes grown on a InSb substrate for high operation temperature application. The studied InAlSb structures cover a cutoff wavelength range from 4.4 μm to 4.8 μm by tuning the Al composition in the absorber layers. A high Al composition barrier layer was inserted between the P-type contact layer and the absorber layer to reduce leakage current from the contact layer. To study the potential for high operation temperature device application, we here consider a 4.5 μm cutoff InAlSb pin photodetector as an example. The detector exhibited a differential resistance at zero bias R0A in excess of 3.8 × 104 Ωcm2 and a quantum efficiency of 57% at 110 K, providing a specific detectivity of more than 1.5 × 1011 cmHz1/2/W and a background limited operating temperature of 130 K with a 300 K background. The dominant mechanism of dark current and its relationship with operating temperature were analyzed in detail. InAlSb detectors are potentially low-cost, have high operating temperature, low dark current and a high quantum efficiency, which can meet the demands of high performance infrared detectors for small platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rogalski, Int. Soc. Opt. Photonics 10433, 104330L (2017).

    Google Scholar 

  2. P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, and A. Rogalski, Appl. Phys. Rev. 1, 041102 (2014).

    Article  Google Scholar 

  3. Y. Reibel, R. Taalat, A. Brunner, L. Rubaldo, T. Augey, A. Kerlain, N. Péré-Laperne, A. Manissadjian, O. Gravrand, P. Castelein, and G. Destéfanis, Int. Soc. Opt. Photonics, 9451, 945110 (2015).

  4. P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowicz, and O. Magen, Int. Soc. Opt. Photonics 7608, 76081V (2010).

    Google Scholar 

  5. Vigo, https://vigo.com.pl/wp-content/uploads/2017/06/VIGO-Catalogue.pdf.

  6. D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, D. Edwall, S. Bhargava, M. Zandian, and W. Tennant, J. Electron. Mater. 45, 4587 (2016).

    Article  Google Scholar 

  7. G. Ariyawansa, C.J. Reyner, E.H. Steenbergen, J.M. Duran, J.D. Reding, J.E. Scheihing, H.R. Bourassa, B.L. Liang, and D.L. Huffaker, Appl. Phys. Lett. 108, 022106 (2016).

    Article  Google Scholar 

  8. G. Chen, A. Haddadi, A.-M. Hoang, R. Chevallier, and M. Razeghi, Opt. Lett. 40, 45 (2015).

    Article  Google Scholar 

  9. N. Baril, A. Brown, P. Maloney, M. Tidrow, D. Lubyshev, Y. Qui, J.M. Fastenau, A.W.K. Liu, and S. Bandara, Appl. Phys. Lett. 109, 122104 (2016).

    Article  Google Scholar 

  10. D.Z. Ting, A. Soibel, L. Höglund, C. Hill, S. Keo, A. Fisher, and S. Gunapala, J. Electron. Mater. 45, 4680 (2016).

    Article  Google Scholar 

  11. P. Klipstein, D. Aronov, M. ben Ezra, I. Barkai, E. Berkowicz, M. Brumer, R. Fraenkel, A. Glozman, S. Grossman, E. Jacobsohn, O. Klin, I. Lukomsky, L. Shkedy, I. Shtrichman, N. Snapi, M. Yassen, and E. Weiss, Infrared Phys. Technol. 59, 172 (2013).

    Article  Google Scholar 

  12. P. Klipstein, Z. Calahorra, A. Zemel, R. Gatt, E. Harush, E. Jacobsohn, O. Klin, M. Yassen, J. Oiknine-Schlesinger, and E. Weiss, Int. Soc. Opt. Photonics 5612, 42 (2004).

    Google Scholar 

  13. G. Chen, W. Sun, and Y. Lv, Infrared Phys. Technol. 81, 262 (2017).

    Article  Google Scholar 

  14. A.P. Craig, A.R.J. Marshall, Z.-B. Tian, S. Krishna, and A. Krier, Appl. Phys. Lett. 103, 253502 (2013).

    Article  Google Scholar 

  15. A. Soibel, C.J. Hill, S.A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D.Z.-Y. Ting, and S.D. Gunapala, Appl. Phys. Lett. 105, 023512 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Lyu, Y., He, Y. et al. Demonstration of InAlSb MWIR Detector for High Operation Temperature Application. J. Electron. Mater. 48, 2986–2991 (2019). https://doi.org/10.1007/s11664-019-07060-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07060-6

Keywords

Navigation