Skip to main content

Surface Disorder Engineering of Flake-Like Bi2WO6 Crystals for Enhanced Photocatalytic Activity

Abstract

The NaBH4 reduction method has been used to engineer the surface of flake-like Bi2WO6 (BWO) crystals with the aim of creating disordered surface structure and enhancing the photocatalytic activity. The disorder-engineered BWO samples were investigated by means of x-ray powder diffraction, field-emission scanning electron microscopy, field-emission transmission electron microscopy, x-ray photoelectron spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy, photoluminescence, electrochemical impedance spectroscopy and photocurrent response. Simulated sunlight, UV light and visible light were separately used as the light source to evaluate the photocatalytic activity of the samples toward the degradation of rhodamine B in aqueous solution. It is demonstrated that 0.03 M-BWO treated at 0.03 M NaBH4 solution exhibits the highest photocatalytic activity, ca. 2.4 times higher than pristine BWO under simulated sunlight irradiation. The significant increase in the photocatalytic activity is observed at UV irradiation, which can be explained by the fact that the disordered surface states (formed in the forbidden gap of BWO) can act as electron acceptors to facilitate the separation of photogenerated electron/hole pairs. A slightly enhanced photocatalytic activity is observed under visible light irradiation, which is attributed to the enhanced visible light absorption induced by the disordered surface states. In addition, it is found that the treatment with high NaBH4 concentrations is detrimental to the photocatalytic activity due to the creation of bulk defects in BWO crystals.

References

  1. H.F. Feng, Z.F. Xu, L. Wang, Y.X. Yu, D. Mitchell, D. Cui, X. Xu, J. Shi, T. Sannomiya, Y. Du, W.C. Hao, and S.X. Dou, ACS Appl. Mater. Interfaces 7, 27592 (2015).

    Article  Google Scholar 

  2. H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M. Akia, and M.H. Isa, J. Ind. Eng. Chem. 26, 1 (2015).

    Article  Google Scholar 

  3. L.J. Di, H. Yang, T. Xian, and X.J. Chen, Micromachines 9, 613 (2018).

    Article  Google Scholar 

  4. Z.M. He, Y.M. Xia, B. Tang, X.F. Jiang, and J.B. Su, Mater. Lett. 184, 148 (2016).

    Article  Google Scholar 

  5. C.A. Gouvea, F. Wypych, S.G. Moraes, N. Duran, N. Nagata, and P. Peralta-Zamora, Chemosphere 40, 433 (2000).

    Article  Google Scholar 

  6. N. Liu, X.Y. Chen, J.L. Zhang, and J.W. Schwank, Catal. Today 225, 34 (2014).

    Article  Google Scholar 

  7. S.G. Kumar and K.S.R.K. Rao, Appl. Surf. Sci. 391, 124 (2017).

    Article  Google Scholar 

  8. Y.M. Xia, Z.M. He, Y.L. Lu, B. Tang, S.P. Sun, J.B. Su, and X.P. Li, RSC Adv. 8, 5441 (2018).

    Article  Google Scholar 

  9. Y.X. Yan, H. Yang, X.X. Zhao, H.M. Zhang, and J.L. Jiang, J. Electron. Mater. 47, 3045 (2018).

    Google Scholar 

  10. L. Tang, J.J. Wang, G.M. Zeng, Y.N. Liu, Y.C. Deng, Y.Y. Zhou, J. Tang, J.J. Wang, and Z. Guo, J. Hazard. Mater. 306, 295 (2016).

    Article  Google Scholar 

  11. X.X. Zhao, H. Yang, S.H. Li, Z.M. Cui, and C.R. Zhang, Mater. Res. Bull. 107, 180 (2018).

    Article  Google Scholar 

  12. K. Singh, K. Kumar, S. Srivastava, and A. Chowdhury, Ceram. Int. 43, 17041 (2017).

    Article  Google Scholar 

  13. G.Q. Hou, Y.K. Li, W.J. An, S.J. Gao, W.L. Zhang, and W.Q. Cui, Mater. Sci. Semicond. Proc. 63, 261 (2017).

    Article  Google Scholar 

  14. Y.M. Guan, Y.B. Su, J.B. Mu, L. Wang, H.H. Li, X.G. Li, H.W. Che, and Z.C. Guo, J. Mater. Sci. Mater. Electron. 29, 11852 (2018).

    Article  Google Scholar 

  15. X.X. Zhao, H. Yang, H.M. Zhang, Z.M. Cui, W.J. Feng, Desalin. Water. Treat. (2019). https://doi.org/10.5004/dwt.2019.23710

  16. D. Ariyanti, L. Mills, J. Dong, Y. Yao, and W. Gao, Mater. Chem. Phys. 199, 571 (2017).

    Article  Google Scholar 

  17. Y.C. Huang, B. Long, H.B. Li, M.S. Balogun, Z.B. Rui, Y.X. Tong, and H.B. Ji, Adv. Mater. Interfaces 2, 1500249 (2015).

    Article  Google Scholar 

  18. A. Tayyebi, T. Soltani, H. Hong, and B.K. Lee, J. Colloid Interface Sci. 514, 565 (2018).

    Article  Google Scholar 

  19. C.T. Zou, Z.Y. Yang, M.J.Y.P. He, Y. Yang, and S.J. Yang, Nano 13, 1850127 (2018).

    Article  Google Scholar 

  20. C.X. Zheng, H. Yang, Z.M. Cui, H.M. Zhang, and X.X. Wang, Nanoscale Res. Lett. 12, 608 (2017).

    Article  Google Scholar 

  21. Y.X. Yan, H. Yang, X.X. Zhao, R.S. Li, and X.X. Wang, Mater. Res. Bull. 105, 286 (2018).

    Article  Google Scholar 

  22. L.X. Lin, J.T. Huang, X.F. Li, M.A. Abass, and S.W. Zhang, Appl. Catal. B Environ. 203, 615 (2017).

    Article  Google Scholar 

  23. J.S. Chen, X. Hua, C.J. Mao, H.L. Niu, and J.M. Song, Res. Chem. Intermed. 44, 2251 (2018).

    Article  Google Scholar 

  24. N.A. Shad, M. Zahoor, K. Bano, S.Z. Bajwa, N. Amin, A. Ihsan, R.A. Soomro, A. Ali, M.I. Arshad, and A.G. Wu, Inorg. Chem. Commun. 86, 213 (2017).

    Article  Google Scholar 

  25. Y.X. Zhou, X.D. Meng, L. Tong, X.H. Zeng, and X.B. Chen, Energies 9, 764 (2016).

    Article  Google Scholar 

  26. Y.J. Liu, R. Cai, T. Fang, J.G. Wu, and A. Wei, Mater. Res. Bull. 66, 96 (2015).

    Article  Google Scholar 

  27. R.P. Panmand, Y.A. Sethi, S.R. Kadam, M.S. Tamboli, L.K. Nikam, J.D. Ambekar, C.J. Park, and B.B. Kale, CrystEngComm 17, 107 (2015).

    Article  Google Scholar 

  28. J.W. Tang, Z.J. Zou, and J.H. Ye, Catal. Lett. 92, 53 (2004).

    Article  Google Scholar 

  29. A. Kudo and S. Hijii, Chem. Lett. 10, 1103 (1999).

    Article  Google Scholar 

  30. S.X. Yu, Y.H. Zhanga, M. Li, X. Du, and H.W. Huang, Appl. Surf. Sci. 391, 491 (2017).

    Article  Google Scholar 

  31. M. Oshikiri, M. Boero, J.H. Ye, Z.G. Zou, and G.Y. Kido, J. Chem. Phys. 117, 7313 (2002).

    Article  Google Scholar 

  32. H. Li, H.S. Hao, S.S. Jin, W.H. Guo, X.F. Hu, H.M. Hou, G.L. Zhang, S. Yan, W.Y. Gao, and G.S. Liu, Catal. Commun. 97, 60 (2017).

    Article  Google Scholar 

  33. A. Etogo, R. Liu, J.B. Ren, L.W. Qi, C.C. Zheng, J.Q. Ning, Y.J. Zhong, and Y. Hu, J. Mater. Chem. A 4, 13242 (2016).

    Article  Google Scholar 

  34. X.L. Hu, J. Tian, Y.J. Xue, Y.J. Li, and H.Z. Cui, ChemCatChem 9, 1511 (2017).

    Article  Google Scholar 

  35. A. Phuruangrat, A. Maneechote, P. Dumrongrojthanath, N. Ekthammathat, S. Thongtem, and T. Thongtem, Mater. Lett. 159, 289 (2015).

    Article  Google Scholar 

  36. C.L. Yu, Y. Bai, J.C. Chen, W.Q. Zhou, H.B. He, J.C. Yu, L.H. Zhu, and S.S. Xue, Sep. Purif. Technol. 154, 115 (2015).

    Article  Google Scholar 

  37. C.X. Zheng and H. Yang, J. Mater. Sci. Mater. Electron. 29, 9291 (2018).

    Article  Google Scholar 

  38. S.J. Li, S.W. Hu, W. Jiang, Y. Liu, J.S. Liu, and Z.H. Wang, J. Colloid. Interface Sci. 501, 156 (2017).

    Article  Google Scholar 

  39. J. Zhang, L.H. Huang, H.Y. Jin, Y.L. Sun, X.M. Ma, E.P. Zhang, H.B. Wang, Z. Kong, and J.H. Xi, Mater. Res. Bull. 85, 140 (2017).

    Article  Google Scholar 

  40. D. Ma, J. Wu, M.C. Gao, Y.J. Xin, T.J. Ma, and Y.Y. Sun, Chem. Eng. J. 290, 136 (2016).

    Article  Google Scholar 

  41. S. Issarapanacheewin, K. Wetchakun, S. Phanichphant, W. Kangwansupamonkon, and N. Wetchakun, Catal. Today 278, 280 (2016).

    Article  Google Scholar 

  42. Y.H. Lv, W.Q. Yao, R.L. Zong, and Y.F. Zhu, Sci. Rep. 6, 19347 (2016).

    Article  Google Scholar 

  43. J.Q. Li, Z. Liang, L. Guo, N. Lei, and Q.Q. Song, Mater. Lett. 223, 93 (2018).

    Article  Google Scholar 

  44. L.J. Di, H. Yang, T. Xian, and X.J. Chen, Nanoscale Res. Lett. 13, 257 (2018).

    Article  Google Scholar 

  45. I.K. Konstantinou and T.A. Albanis, Appl. Catal. B Environ. 49, 1 (2004).

    Article  Google Scholar 

  46. X.Y. Kong, W.L. Tan, B.J. Ng, S.P. Chai, and A.R. Mohamed, Nano Res. 10, 1720 (2017).

    Article  Google Scholar 

  47. Y.C. Ye, H. Yang, H.M. Zhang, and J.L. Jiang, Environ. Technol. (2018). https://doi.org/10.1080/09593330.2018.1538261.

    Google Scholar 

  48. K.S.W. Sing and R.T. Williams, Adsorpt. Sci. Technol. 22, 773 (2004).

    Article  Google Scholar 

  49. X.W. Li, Y.J. Sun, T. Xiong, G.M. Jiang, Y.X. Zhang, Z.B. Wu, and F. Dong, J. Catal. 352, 102 (2017).

    Article  Google Scholar 

  50. X.X. Zhao, H. Yang, R.S. Li, Z.M. Cui, and X.Q. Liu, Environ. Sci. Pollut. Res. Int. (2019). https://doi.org/10.1007/s11356-018-4050-3.

    Google Scholar 

  51. J. Tian, Y. Sang, G. Yu, H. Jiang, X. Mu, and H. Liu, Adv. Mater. 25, 5075 (2013).

    Article  Google Scholar 

  52. Z.S. Seddigi, M.A. Gondal, S.G. Rashid, M.A. Abdulaziz, and S.A. Ahmed, J. Mol. Catal. A Chem. 420, 167 (2016).

    Article  Google Scholar 

  53. X. Li, R. Huang, Y. Hu, Y. Chen, W. Liu, R. Yuan, and Z. Li, Inorg. Chem. 51, 6245 (2012).

    Article  Google Scholar 

  54. X.X. Zhao, H. Yang, Z.M. Cui, X.X. Wang, and Z. Yi, Micromachines 10, 66 (2019).

    Article  Google Scholar 

  55. H.Q. Tan, Z. Zhao, W.B. Zhu, E.N. Coker, B.S. Li, M. Zheng, W.X. Yu, H.Y. Fan, and Z.C. Sun, ACS Appl. Mater. Inter. 6, 19184 (2014).

    Article  Google Scholar 

  56. J.L. Li, M. Zhang, Z.J. Guan, Q.Y. Li, C.Q. He, and J.J. Yang, Appl. Catal. B Environ. 206, 300 (2017).

    Article  Google Scholar 

  57. Y.Y. Zhu, Q. Ling, Y.F. Liu, H. Wang, and Y.F. Zhu, Appl. Catal. B Environ. 187, 204 (2016).

    Article  Google Scholar 

  58. Y.C. Ye, H. Yang, X.X. Wang, and W.J. Feng, Mater. Sci. Semicond. Proc. 82, 14 (2018).

    Article  Google Scholar 

  59. Y. Xia, Z. He, W. Yang, B. Tang, Y. Lu, K. Hu, J. Su, and X. Li, Mater. Res. Express 5, 025504 (2018).

    Article  Google Scholar 

  60. F. Wang, H. Yang, H.M. Zhang, and J.L. Jiang, J. Mater. Sci. Mater. Electron. 29, 1304 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51662027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Yang, H., Wang, X. et al. Surface Disorder Engineering of Flake-Like Bi2WO6 Crystals for Enhanced Photocatalytic Activity. J. Electron. Mater. 48, 2067–2076 (2019). https://doi.org/10.1007/s11664-019-07045-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07045-5

Keywords

  • Flake-like Bi2WO6 crystals
  • engineered disorder
  • photocatalytic activity
  • photocatalytic mechanism