Skip to main content
Log in

Lift-Off Mechanism of GaN Thin Films with Buried Nanocavities Investigated by SEM and TEM

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A process to slice and separate GaN layers with buried nanocavities was presented via an annealing process of nanoporous GaN (0002) thin films at 1050°C in an NH3 ambient. We were able to separate and lift off GaN layers over a macroscopic area (\( \ge \) cm2). The several growth stages of buried nanocavities were examined by scanning/transmission emission microscopy techniques. During the early stage of annealing, the annealing leads to variations in morphology from nanopores with rough sidewalls to columnar or hexagonal nanopores with smooth sidewalls. At the same time, amorphous gallium oxide and single crystal GaN with high dislocation density, which are formed by electrochemical etching, are converted into GaN with a perfect crystal lattice. Subsequently, the columnar or hexagonal nanopores are sealed, cut, and then spheroidized. Above a sufficiently high porosity (> 50%), the nanocavities will overlap one another and coalesce, allowing a stand-alone GaN thin film to be lifted off the original substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Najar, M. Gerland, and M. Jouiad, J. Appl. Phys. 111, 093513 (2012).

    Article  Google Scholar 

  2. S.F. Cheah, S.C. Lee, S.S. Ng, F.K. Yam, H.A. Hassan, and Z. Hassan, Appl. Phys. Lett. 102, 101601 (2013).

    Article  Google Scholar 

  3. D. Chen, H. Xiao, and J. Han, J. Appl. Phys. 112, 064303 (2012).

    Article  Google Scholar 

  4. S. Nakamura, Y. Harada, and M. Seno, Appl. Phys. Lett. 58, 2021 (1991).

    Article  Google Scholar 

  5. T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, Science 285, 1905 (1999).

    Article  Google Scholar 

  6. J. Chaudhuri, C. Ignatiev, S. Stepanov, D. Tsvetkov, A. Cherenkov, and V. Dmitriev, Mater. Sci. Eng., B 78, 22 (2000).

    Article  Google Scholar 

  7. H. Hartono, C.B. Soh, S.Y. Chow, S.J. Chua, and E.A. Fitzgerald, Appl. Phys. Lett. 90, 61 (2007).

    Article  Google Scholar 

  8. B. Wang, Z.D. Zhao, W. Xu, Y.P. Sui, and G.H. Yu, Mater. Sci. Semicond. Process. 27, 541 (2015).

    Article  Google Scholar 

  9. Y. Zhang, B. Leung, and J. Han, Appl. Phys. Lett. 100, 181908 (2012).

    Article  Google Scholar 

  10. J.H. Kang, M. Ebaid, J.K. Lee, T. Jeong, and S.W. Ryu, ACS Appl. Mater. Interfaces 6, 8683 (2014).

    Article  Google Scholar 

  11. L.W. Jang, D. Jeon, T. Chuang, A. Polyakov, I.H. Lee, and A.C.S. Appl, Mater. Interfaces 6, 985 (2014).

    Article  Google Scholar 

  12. C.D. Yerino, Y. Zhang, B. Leung, M.L. Lee, T.C. Hsu, C.K. Wang, W.C. Peng, and J. Han, Appl. Phys. Lett. 98, 251910 (2011).

    Article  Google Scholar 

  13. K. Sudoh, H. Iwasaki, R. Hiruta, H. Kuribayashi, and R. Shimizu, J. Appl. Phys. 105, 083536 (2009).

    Article  Google Scholar 

  14. R.J. Martin-Palma, L. Pascual, A. Landa, P. Herrero, and J.M. Martinez-Duart, Appl. Phys. Lett. 85, 2517 (2004).

    Article  Google Scholar 

  15. M.Y. Ghannam, Y.A. Raheem, A.A. Alomar, and J. Poortmans, Phys. Status Solidi (c) 209, 2194 (2012).

    Article  Google Scholar 

  16. M.Y. Ghannam, A.S. Alomar, J. Poortmans, and R.P. Mertens, J. Appl. Phys. 108, 074902 (2010).

    Article  Google Scholar 

  17. Q. Gao, R. Liu, H. Xiao, D. Cao, J. Liu, and J. Ma, Appl. Surf. Sci. 387, 4061 (2016).

    Article  Google Scholar 

  18. Y. Zhang, Q. Sun, B. Leung, J. Simon, M.L. Lee, and J. Han, Nanotechnololgy 22, 045603 (2011).

    Article  Google Scholar 

  19. S. Hearne, E. Chason, J. Han, J.A. Floro, J. Figiel, J. Hunter, H. Amano, and I.S.T. Tsong, Appl. Phys. Lett. 74, 356 (1999).

    Article  Google Scholar 

  20. D.J. Srolovitz and S.A. Safran, J. Appl. Phys. 60, 247 (1986).

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Key Research and Development Plan of Shandong Province, China (2018GGX102024, 2018GGX102014) and the National Natural Science Foundation of China (61376069, 51372141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongdi Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Gao, Q., Cao, D. et al. Lift-Off Mechanism of GaN Thin Films with Buried Nanocavities Investigated by SEM and TEM. J. Electron. Mater. 48, 3036–3042 (2019). https://doi.org/10.1007/s11664-019-07035-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07035-7

Keywords

Navigation