Journal of Electronic Materials

, Volume 48, Issue 5, pp 3355–3362 | Cite as

GaN Heteroepitaxy on Strain-Engineered (111) Si/Si1−xGex

  • Anushka Bansal
  • Nathan C. Martin
  • Ke Wang
  • Joan M. RedwingEmail author
Topical Collection: 60th Electronic Materials CONFERENCE 2018
Part of the following topical collections:
  1. 60th Electronic Materials Conference 2018


The metalorganic chemical vapor deposition growth of GaN on strained Si/Si1−xGex epilayers on (111) Si substrates was investigated. A multi-beam optical stress sensor (MOSS) was used for in situ stress measurements during growth of the entire heterostructure. MOSS was initially used to measure the extent of stress relaxation during the growth of constant-composition Si1−xGex layers on Si. The results compared favorably to that obtained by post-growth high-resolution x-ray diffraction. MOSS was also used to monitor stress during the growth of thin, tensile-strained Si on relaxed Si0.95Ge0.05/compositionally graded epilayers. The tensile-strained Si/Si1−xGex epilayers were then used as virtual substrates for the growth of GaN epilayers using a thin (90 nm) AlN buffer layer. GaN grown on tensile-strained Si exhibited a higher initial compressive stress and reduced final tensile stress compared to films grown directly on (111) Si, resulting in a lower crack density in the GaN along with a reduced density of threading dislocations. These results suggest that strain engineering of the Si surface prior to growth may provide an alternative method to improve the quality of GaN grown on (111) Si.


Metalorganic chemical vapor deposition GaN in situ stress silicon–germanium threading dislocation density crack density 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank Dr. Tanushree Choudhury for helpful discussions during the experiments. This work was supported by the National Science Foundation under Grants Nos. DMR-1410765 and DMR-1808900.


  1. 1.
    O. Ambacher, J. Phys. D Appl. Phys. 31, 2653 (1998).CrossRefGoogle Scholar
  2. 2.
    J. Wu, J. Appl. Phys. 106, 11101 (2009).CrossRefGoogle Scholar
  3. 3.
    F. Semond, Y. Cordier, N. Grandjean, F. Natali, B. Damilano, and S. Ve, Phys. Status Solidi 510, 501 (2001).CrossRefGoogle Scholar
  4. 4.
    S. Raghavan and J.M. Redwing, J. Appl. Phys. 98, 23514 (2005).CrossRefGoogle Scholar
  5. 5.
    J.M. Redwing and S. Raghavan, III–V Compound Semiconductors: Integration with Silicon-Based Microelectronics, ed. T. Li, M. Mastro, and A. Dadgar (Boca Raton: CRC Press, 2011)Google Scholar
  6. 6.
    A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken, and A. Krost, Jpn. J. Appl. Phys. 39, L1183 (2000).CrossRefGoogle Scholar
  7. 7.
    S. Iwakami, O. Machida, Y. Izawa, R. Baba, M. Yanagihara, T. Ehara, N. Kaneko, H. Goto, and A. Iwabuchi, Jpn. J. Appl. Phys. 46, L721 (2007).CrossRefGoogle Scholar
  8. 8.
    T. Riemann, T. Hempel, J. Christen, P. Veit, R. Clos, A. Dadgar, A. Krost, U. Haboeck, and A. Hoffmann, J. Appl. Phys. 99, 123518 (2006).CrossRefGoogle Scholar
  9. 9.
    H. Marchand, L. Zhao, N. Zhang, B. Moran, R. Coffie, U.K. Mishra, J.S. Speck, S.P. DenBaars, and J.A. Freitas, J. Appl. Phys. 89, 7846 (2001).CrossRefGoogle Scholar
  10. 10.
    S. Raghavan and J. Redwing, J. Appl. Phys. 98, 23515 (2005).CrossRefGoogle Scholar
  11. 11.
    M. Jamil, J.R. Grandusky, V. Jindal, F. Shahedipour-Sandvik, S. Guha, and M. Arif, Appl. Phys. Lett. 87, 82103 (2005).CrossRefGoogle Scholar
  12. 12.
    M. Jamil, J.R. Grandusky, V. Jindal, N. Tripathi, and F. Shahedipour-Sandvik, J. Appl. Phys. 102, 23701 (2007).CrossRefGoogle Scholar
  13. 13.
    J.C. Gagnon, M. Tungare, X. Weng, J.M. Leathersich, F. Shahedipour-Sandvik, and J.M. Redwing, J. Electron. Mater. 41, 865 (2012).CrossRefGoogle Scholar
  14. 14.
    J.C. Gagnon, J.M. Leathersich, F.S. Shahedipour-Sandvik, and J.M. Redwing, J. Cryst. Growth 393, 98 (2014).CrossRefGoogle Scholar
  15. 15.
    G.G. Stoney and C.A. Parsons, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 82, 172 (1909).Google Scholar
  16. 16.
    P.H. Townsend, D.M. Barnett, and T.A. Brunner, J. Appl. Phys. 62, 4438 (1987).CrossRefGoogle Scholar
  17. 17.
    J.M. Hartmann, B. Gallas, J. Zhang, and J.J. Harris, Semicond. Sci. Technol. 15, 370 (2000).CrossRefGoogle Scholar
  18. 18.
    W.A. Brantley, J. Appl. Phys. 44, 534 (1973).CrossRefGoogle Scholar
  19. 19.
    A. Dadgar, F. Schulze, T. Zettler, K. Haberland, R. Clos, G. Straßburger, J. Bläsing, A. Diez, and A. Krost, J. Cryst. Growth 272, 72 (2004).CrossRefGoogle Scholar
  20. 20.
    E.A. Fitzgerald, E.A. Fitzgerald, Y.H. Xie, D. Monroe, and P.J. Silverman, J. Vac. Sci. Technol. B, Microelectron. Process. Phenom. (Published for the Society by the American Institute of Physics, 1992), pp. 1807–1819Google Scholar
  21. 21.
    W.G. Breiland, S.R. Lee, and D.D. Koleske, J. Appl. Phys. 95, 3453 (2004).CrossRefGoogle Scholar
  22. 22.
    V. Srikant, J.S. Speck, and D.R. Clarke, J. Appl. Phys. 82, 4286 (1997).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Anushka Bansal
    • 1
  • Nathan C. Martin
    • 1
  • Ke Wang
    • 2
  • Joan M. Redwing
    • 1
    • 3
    Email author
  1. 1.Department of Materials Science and EngineeringPennsylvania State UniversityUniversity ParkUSA
  2. 2.Materials Characterization LaboratoryUniversity ParkUSA
  3. 3.Materials Research InstitutePennsylvania State UniversityUniversity ParkUSA

Personalised recommendations