Abstract
Carbon doping is a viable approach for compensating the unintentional donors in GaN and achieving semi-insulating substrates necessary for high-frequency, high-power devices. In this work, bulk material properties and point defects are studied in mm-thick free-standing carbon-doped GaN to understand the efficacy of the carbon dopant. Temperature-dependent Hall measurements reveal high resistivity and low carrier concentrations at temperatures as high as 560°C in a 6 × 1017 cm−3 C-doped sample, and electron paramagnetic resonance (EPR) indicates that carbon acts as the compensating defect. Photoluminescence, in agreement with photo-EPR, suggests that the compensating center is CN; however, additional defects, which possibly limit compensation, are formed at carbon concentrations greater than 5 × 1017 cm−3.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
S. Tomiya, T. Hino, S. Goto, M. Takeya, and M. Ikeda, IEEE J. Sel. Top. Quantum Electron. 10, 1277 (2004).
I.C. Kizilyalli, A.P. Edwards, O. Aktas, T. Prunty, and D. Bour, IEEE Trans. Electron Devices 62, 414 (2015).
M. Bockowski, M. Iwinska, M. Amilusik, B. Lucznik, M. Fijalkowski, E. Litwin-Staszewska, R. Piotrzkowski, and T. Sochacki, J. Cryst. Growth 499, 1 (2018).
J.A. Freitas, J.C. Culbertson, N.A. Mahadik, T. Sochacki, M. Iwinska, and M.S. Bockowski, J. Cryst. Growth 456, 113 (2016).
H. Teisseyre, M. Bockowski, I. Grzegory, A. Kozanecki, B. Damilano, Y. Zhydachevskii, M. Kunzer, K. Holc, and U.T. Schwarz, Appl. Phys. Lett. 103, 011107 (2013).
S. Heikman, S. Keller, S.P. DenBaars, and U.K. Mishra, Appl. Phys. Lett. 81, 439 (2002).
A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, V.I. Vdovin, A.V. Markov, A.A. Shlensky, E. Prebble, D. Hanser, J.M. Zavada, and S.J. Pearton, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 25, 686 (2007).
J.L. Lyons, A. Janotti, and C.G. Van de Walle, Phys. Rev. B 89, 035204 (2014).
M.J. Uren, M. Caesar, S. Karboyan, P. Moens, P. Vanmeerbeek, and M. Kuball, IEEE Electron Device Lett. 36, 826 (2015).
M.J. Uren, M. Cäsar, M.A. Gajda, and M. Kuball, Appl. Phys. Lett. 104, 263505 (2014).
E. Bahat-Treidel, F. Brunner, O. Hilt, E. Cho, J. Wurfl, and G. Trankle, IEEE Trans. Electron Devices 57, 3050 (2010).
H. Tang, Z.Q. Fang, S. Rolfe, J.A. Bardwell, and S. Raymond, J. Appl. Phys. 107, 103701 (2010).
D.O. Demchenko, I.C. Diallo, and M.A. Reshchikov, Phys. Rev. Lett. 110, 087404 (2013).
A.F. Wright, J. Appl. Phys. 92, 2575 (2002).
P.B. Klein and S.C. Binari, J. Phys. Condens. Matter 15, R1641 (2003).
M. Iwinska, R. Piotrzkowski, E. Litwin-Staszewska, T. Sochacki, M. Amilusik, M. Fijalkowsk, B. Lucznik, and M. Bockowski, Appl. Phys. Express 10, 011003 (2017).
W.R. Willoughby, M.E. Zvanut, S. Paudel, M. Iwinska, T. Sochacki, and M. Bockowski, J. Appl. Phys. 123, 161547 (2017).
M. Matsubara and E. Bellotti, J. Appl. Phys. 121, 195701 (2017).
J.A. Weil, J.R. Bolton, and J.E. Wertz, Elementary Theory and Practical Applications (New York: Wiley, 1994).
J.L. Lyons and C.G. Van de Walle, NPJ Comput. Mater. 3, 12 (2017).
E.R. Glaser, M. Murthy, J.A. Freitas, D.F. Storm, L. Zhou, and D.J. Smith, Phys. B 401–402, 327 (2007).
M.A. Reshchikov and H. Morkoç, J. Appl. Phys. 97, 061301 (2005).
M.A. Reshchikov, A. Usikov, H. Helava, and Y. Makarov, Appl. Phys. Lett. 104, 032103 (2014).
J.L. Lyons, A. Janotti, and C.G. Van de Walle, Appl. Phys. Lett. 97, 152108 (2010).
D.S. Green, U.K. Mishra, and J.S. Speck, J. Appl. Phys. 95, 8456 (2004).
R. Armitage, Q. Yang, and E.R. Weber, J. Appl. Phys. 97, 073524 (2005).
A. Lesnik, M.P. Hoffmann, A. Fariza, J. Bläsing, H. Witte, P. Veit, F. Hörich, C. Berger, J. Hennig, A. Dadgar, and A. Strittmatter, Physica Status Solidi (b) 254, 1600708 (2016).
M.A. Reshchikov, M. Vorobiov, D.O. Demchenko, Ü. ÖzgÜr, H. Morkoç, A. Lesnik, M.P. Hoffmann, F. HÖrich, A. Dadgar, and A. Strittmatter, Phys. Rev. B 98, 125207 (2018).
A.E. Wickenden, D.D. Koleske, R.L. Henry, R.J. Gorman, M.E. Twigg, M. Fatemi, J.A. Freitas, and W.J. Moore, J. Electron. Mater. 29, 21 (2000).
D.D. Koleske, A.E. Wickenden, R.L. Henry, and M.E. Twigg, J. Cryst. Growth 242, 55 (2002).
C.H. Seager, A.F. Wright, J. Yu, and W. Götz, J. Appl. Phys. 92, 6553 (2002).
T. Narita, K. Tomita, Y. Tokuda, T. Kogiso, M. Horita, and T. Kachi, J. Appl. Phys. 124, 215701 (2018).
J. Neugebauer and C.G. Van de Walle, Phys. Rev. B 50, 8067 (1994).
M.E. Zvanut, S. Paudel, U.R. Sunay, W.R. Willoughby, M. Iwinska, T. Sochacki, and M. Bockowski, J. Appl. Phys. 124, 075701 (2018).
Acknowledgments
The work performed at NRL was supported by the Office of Naval Research and that at UAB by NSF DMR-1606765. We also thank Dr. Jack Lyons (NRL) for helpful discussions and Mr. Will Willoughby for some data analysis. The research in Poland was supported by the Department of the Navy, Office of Naval Research (ONRG-NICOP-N62909-17-1-2004) and by the Polish National Science Center through Project No. 2017/25/B/ST5/02897.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zvanut, M.E., Paudel, S., Glaser, E.R. et al. Incorporation of Carbon in Free-Standing HVPE-Grown GaN Substrates. J. Electron. Mater. 48, 2226–2232 (2019). https://doi.org/10.1007/s11664-019-07016-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-019-07016-w