Skip to main content
Log in

Large Piezoelectric Stability and Low Polarization Fatigue in 6Pb(Sc1/2Nb1/2)O3-70Pb(Mg1/3Nb2/3)O3-24PbTiO3 Crystals

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electrical properties and polarization fatigue of [001]-oriented 6Pb(Sc1/2Nb1/2)O3-70Pb(Mg1/3Nb2/3)O3-24PbTiO3 (6PSN-70PMN-24PT) crystals were investigated. Compared with binary Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) crystals, the ternary 6PSN-70PMN-24PT crystal showed a higher rhombohedral → tetragonal transition temperature (TR-T = 120°C) and a larger coercive field (Ec = 4 kV/cm). It was found that the piezoelectric constant (d33 ≈ 1200 pC/N) and electromechanical coupling coefficient (kt ≈ 61%) were weakly dependent on the thermal annealing temperature (Ta), maintaining over 90% of the original value at Ta < 120°C, indicating excellent piezoelectric thermal stability. Electric fatigue measurements showed that the ternary 6PSN-70PMN-24PT crystal exhibited slight fatigue characteristics below 105 bipolar cycles, while the binary PMN-PT crystal exhibited sudden polarization degradation when the cycle numbers were above 102 cycles. The improved fatigue stability for 6PSN-70PMN-24PT crystals was attributed to the large coercive field. The physical mechanisms of the enhanced coercive field and high transition temperature were discussed based on repulsive energy and polar domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.F. Chang, B. Watson, M. Fanton, R.J. Meyer Jr, and G.L. Messing, Appl. Phys. Lett. 111, 232901 (2017).

    Article  Google Scholar 

  2. F. Li, D.B. Lin, Z.B. Chen, Z.X. Cheng, J.L. Wang, C.C. Li, Z. Xu, Q.W. Huang, X.Z. Liao, L.Q. Chen, T.R. Shrout, and S.J. Zhang, Nat. Mater. 17, 349 (2018).

    Article  Google Scholar 

  3. S.E. Park and T.R. Shrout, J. Appl. Phys. 82, 1804 (1997).

    Article  Google Scholar 

  4. F. Li, S.J. Zhang, Z. Xu, X. Wei, J. Luo, and T.R. Shrout, J. Appl. Phys. 108, 034106 (2010).

    Article  Google Scholar 

  5. J. Peräntie, J. Hagberg, A. Uusimäki, and H. Jantunen, Phys. Rev. B 82, 134119 (2010).

    Article  Google Scholar 

  6. Y.H. Bing and Z.G. Ye, J. Cryst. Growth 287, 326 (2006).

    Article  Google Scholar 

  7. A.T. Kozakov, O.E. Polozhentsev, I.P. Raevski, N. Kumar, S.I. Raevskaya, and A.V. Nikolskii, Surf. Sci. 666, 1 (2017).

    Article  Google Scholar 

  8. V. Sivasubramanian, V. Subramanian, and S. Kojima, Phys. Rev. B 93, 054115 (2016).

    Article  Google Scholar 

  9. V.R. Shanmugam, N.A. Srungarpu, and J.P. Sadequa, J. Mater. Res. 29, 1054 (2014).

    Article  Google Scholar 

  10. Z.J. Wang, X.Z. Li, C. He, Y. Liu, S.J. Han, S.L. Pan, and X.F. Long, J. Mater. Sci. 50, 3970 (2015).

    Article  Google Scholar 

  11. Y. Yamashita and K. Harada, Jpn. J. Appl. Phys. 36, 6039 (1997).

    Article  Google Scholar 

  12. Z.J. Wang, C. He, H.M. Qiao, D.F. Pang, X.M. Yang, S.G. Zhao, X.Z. Li, Y. Liu, and X.F. Long, Cryst. Growth Des. 18, 145 (2018).

    Article  Google Scholar 

  13. Z.J. Wang, C. He, X.Z. Li, Y. Liu, X.F. Long, S.J. Han, and S.L. Pan, Mater. Lett. 184, 162 (2016).

    Article  Google Scholar 

  14. K. Yanagisawa, J.C. Rendon-Angeles, H. Kanai, and Y. Yamashita, J. Mater. Sci. Lett. 17, 2105 (1998).

    Article  Google Scholar 

  15. Y.P. Guo, H.Q. Xu, H.S. Luo, G.S. Xu, and Z.W. Yin, J. Cryst. Growth 226, 111 (2001).

    Article  Google Scholar 

  16. C.J. He, H.B. Chen, F. Bai, Z.B. Fan, L. Sun, F. Xu, J.M. Wang, Y.W. Liu, and K.J. Zhu, J. Appl. Phys. 112, 126102 (2012).

    Article  Google Scholar 

  17. F.L. Goupil, A. Berenov, A.K. Axelsson, M. Valant, and N.M. Alford, J. Appl. Phys. 111, 124109 (2012).

    Article  Google Scholar 

  18. Z.Y. Feng, X.Y. Zhao, and H.S. Luo, J. Phys. Condens. Matter 16, 6771 (2004).

    Article  Google Scholar 

  19. X.H. Zhao, W.G. Qu, H. He, N. Vittayakorn, and X.L. Tan, J. Am. Ceram. Soc. 89, 202 (2006).

    Article  Google Scholar 

  20. G.S. Xu, H.S. Luo, P.C. Wang, Z.Y. Qi, and Z.W. Yin, Chin. Sci. Bull. 45, 1380 (2000).

    Article  Google Scholar 

  21. L. Farber and P. Davies, J. Am. Ceram. Soc. 86, 1861 (2003).

    Article  Google Scholar 

  22. N.N. Luo, S.J. Zhang, Q. Li, Q.F. Yan, Y.L. Zhang, T. Ansella, J. Luo, and T.R. Shrout, J. Mater. Chem. C 4, 4568 (2016).

    Article  Google Scholar 

  23. W.H. He, Q. Li, X.Q. Xi, and Q.F. Yan, J. Am. Ceram. Soc. 101, 1236 (2018).

    Article  Google Scholar 

  24. R. Zhang, B. Jiang, W.H. Jiang, and W.W. Cao, Mater. Lett. 57, 1305 (2003).

    Article  Google Scholar 

  25. G.S. Xu, H.S. Luo, P.C. Wang, and Z.W. Yin, Chin. Sci. Bull. 45, 700 (2000).

    Google Scholar 

  26. H.B. Zhang, X.Y. Lu, R.X. Wang, C. Wang, L.M. Zheng, Z. Liu, C. Yang, R. Zhang, B. Yang, and W. Cao, Phys. Rev. B 96, 054109 (2017).

    Article  Google Scholar 

  27. Y.L. Wang, E.W. Sun, W. Song, W.C. Li, R. Zhang, and W.W. Cao, J. Alloys Compd. 601, 154 (2014).

    Article  Google Scholar 

  28. L.M. Zheng, R. Sahul, S.J. Zhang, W.H. Jiang, S.Y. Li, and W.W. Cao, J. Appl. Phys. 114, 104105 (2013).

    Article  Google Scholar 

  29. L.H. Liu, X. Wu, S. Wang, W. Di, D. Lin, X.Y. Zhao, and H. Luo, J. Cryst. Growth 318, 856 (2011).

    Article  Google Scholar 

  30. S.J. Zhang, J. Luo, F. Li, R.J. Meyer Jr, W. Hackenberger, and T.R. Shrout, Acta Mater. 58, 3773 (2010).

    Article  Google Scholar 

  31. I. Grinberga, M.R. Suchomel, P.K. Davies, and A.M. Rappe, J. Appl. Phys. 98, 094111 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojuan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Jing, Q., Xi, Z. et al. Large Piezoelectric Stability and Low Polarization Fatigue in 6Pb(Sc1/2Nb1/2)O3-70Pb(Mg1/3Nb2/3)O3-24PbTiO3 Crystals. J. Electron. Mater. 48, 2168–2173 (2019). https://doi.org/10.1007/s11664-019-07007-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07007-x

Keywords

Navigation