Skip to main content

Advertisement

Log in

Modeling and Simulation of a Thermoelectric Generator Using Bismuth Telluride for Waste Heat Recovery in Automotive Diesel Engines

  • Topical Collection: International Conference on Thermoelectrics 2018
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Waste heat recovery, using thermoelectric power technology, is a promising approach to reduce fuel consumption and CO2 emissions on passenger cars. However, possible application requires optimizing heat exchangers and defining adequate thermoelectric materials to improve efficiency. A dynamic model has been developed to investigate the application of a thermoelectric generator (TEG) for waste heat recovery in an automotive engine exhaust. The converted electrical energy is used to charge a 12 V battery. The model evaluates the amount of recovered energy over a prescribed drive-cycle. It also evaluates the effect of system integration on the TEG performances, such as fuel consumption, temperatures downstream of the TEG and the relative counter pressure. Experiments are done on both a thermoelectric module (TEM) test rig and a diesel engine test rig equipped with a TEG prototype. Simulations of steady operating points show good agreement with experimental data. The results show a maximum power of 42 W generated by the TEG, with a maximum power of 1.5 W per module (corresponding to TEM hot side temperature of 671 K and TEM cold side temperature of 354 K). At the end of the duty cycle, the energy recovered by the vehicle battery is around 27 kJ (7.5 Wh). The engine counter pressure exceeds 30 mbar when the mass flow rate is higher than 36 g s−1. The simulation results of temperatures, pressures, and output power show that the model can be used as a basis to develop a TEG with high performance that ensure safety operation of the engine and the after treatment system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

Coulombic efficiency

I :

Generated current (A)

k :

Thermal conductance of n-type and p-type (W m−2 K−1)

\({\dot{m}}\) :

Mass flow rate (kg s−1)

P :

Electrical power (W)

Q :

Battery power (W)

\({\dot{Q}}\) :

Thermal power (W)

rpm:

Engine rotational speed (round min−1)

R :

Electrical resistance (Ω)

T :

Temperature (°C)

V :

Voltage (V)

Z :

Factor of merit (1 K−1)

ZT :

Figure of merit

α :

Seebeck coefficient (V K−1)

ω :

Uncertainty

0:

Initial

c:

Cold side

h:

Hot side

in:

Inlet

I:

Internal

n :

n-type

OC:

Open circuit

out:

Outlet

p :

p-type

resist:

Resistance

ICE:

Internal combustion engine

OP:

Operating points

TEG:

Thermoelectric generator

TEM:

Thermoelectric module

WHR:

Waste heat recovery

References

  1. European Environment Agency, (Eur. Environ. Agency 2018), https://www.eea.europa.eu/data-and-maps/data/co2-cars-emission-14. Accessed 18 July 2018.

  2. S.E. Aly, Heat Recover. Syst. CHP 7, 445 (1987).

    Article  Google Scholar 

  3. V. Pandiyarajan, M. Chinna Pandian, E. Malan, R. Velraj, and R.V. Seeniraj, Appl. Energy 88, 77 (2011).

    Article  Google Scholar 

  4. C. Européenne, C. Européenne, (Comm. Eur. communiqué de presse 2012), http://europa.eu/rapid/press-release_MEMO-12-548_en.htm. Accessed 18 July 2018.

  5. Y. Ichiki, K. Shiraishi, T. Kanaboshi, Y. Ono, and Y. Ohta, Mitsubishi Heavy Ind. Tech. Rev. 48, 17 (2011).

    Google Scholar 

  6. A.M. Noor, R.C. Puteh, and S. Rajoo, J. Mod. Sci. Technol. 2, 108 (2014).

    Google Scholar 

  7. R. Shi, T. He, J. Peng, Y. Zhang, and W. Zhuge, Energy 102, 276 (2016).

    Article  Google Scholar 

  8. S. LeBlanc, Sustain. Mater. Technol. 1, 26 (2014).

    Google Scholar 

  9. X. Niu, J. Yu, and S. Wang, J. Power Sources 188, 621 (2009).

    Article  Google Scholar 

  10. M. Chen, L.A. Rosendahl, T.J. Condra, and J.K. Pedersen, IEEE Trans. Energy Convers. 24, 112 (2009).

    Article  Google Scholar 

  11. W. Li, M.C. Paul, A. Montecucco, A.R. Knox, J. Siviter, N. Sellami, X.L. Meng, E.F. Fernandez, T.K. Mallick, P. Mullen, A. Ashraf, A. Samarelli, L.F. Llin, D.J. Paul, D.H. Gregory, M. Gao, T. Sweet, F. Azough, R. Lowndes, and R. Freer, Energy Procedia 75, 633 (2015).

    Article  Google Scholar 

  12. Z.G. Shen, S.Y. Wu, L. Xiao, and G. Yin, Energy 95, 367 (2016).

    Article  Google Scholar 

  13. S. Lv, W. He, Q. Jiang, Z. Hu, X. Liu, H. Chen, and M. Liu, Energy Convers. Manag. 156, 167 (2018).

    Article  Google Scholar 

  14. W.H. Chen, S.R. Huang, X.D. Wang, P.H. Wu, and Y.L. Lin, Energy 133, 257 (2017).

    Article  Google Scholar 

  15. C.N. Kim, Appl. Therm. Eng. 130, 408 (2018).

    Article  Google Scholar 

  16. I. Arsie, A. Cricchio, C. Pianese, V. Ricciardi, and M. De Cesare, Energy Procedia 82, 81 (2015).

    Article  Google Scholar 

  17. Y. Zhang, J.D. Angelo, X. Wang, and J.Yang, in Directions in Engine-Efficiency and Emissions Research Conference (Dearborn, Michigan, 2012).

  18. S. Yu, Q. Du, H. Diao, G. Shu, and K. Jiao, Appl. Energy 138, 276 (2015).

    Article  Google Scholar 

  19. X. Liu, C. Li, Y.D. Deng, and C.Q. Su, Int. J. Electr. Power Energy Syst. 67, 510 (2015).

    Article  Google Scholar 

  20. X. Gou, S. Yang, H. Xiao, and Q. Ou, Energy 52, 201 (2013).

    Article  Google Scholar 

  21. W. He, S. Wang, and L. Yue, Appl. Energy 196, 259 (2017).

    Article  Google Scholar 

  22. S. Lan, Z. Yang, R. Chen, and R. Stobart, Appl. Energy 210, 327 (2018).

    Article  Google Scholar 

  23. J. Eakburanawat and I. Boonyaroonate, Appl. Energy 83, 687 (2006).

    Article  Google Scholar 

  24. R. Anand, K. Adhithya, G. Balaji, and J. Harinarayanan, Int. J. Res. Eng. Technol. 4, 296 (2015).

    Article  Google Scholar 

  25. L. Sileghem, D. Bosteels, J. May, C. Favre, and S. Verhelst, Transp. Res. Part D Transp. Environ. 32, 70 (2014).

    Article  Google Scholar 

  26. A. Nour Eddine, D. Chalet, X. Faure, and L. Aixala, Energy 162, 715 (2018).

    Article  Google Scholar 

  27. H. Sara, D. Chalet, M. Cormerais, and J.-F. Hetet, Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 232, 1019 (2018).

    Article  Google Scholar 

  28. H. Sara, D. Chalet, and M. Cormerais, J. Therm. Sci. Eng. Appl. 10, 041010 (2018).

    Article  Google Scholar 

  29. J.B. Heywood, Internal Combustion Engine Fundementals (New York: McGrawHill Series in Mechanical Engineering, 1988).

    Google Scholar 

  30. A. Nour Eddine, D. Chalet, X. Faure, L. Aixala, and P. Chessé, Energy 143, 682 (2018).

    Article  Google Scholar 

  31. H.W. Coleman, W.G. Steele, and H.W. Coleman, Experimentation, Validation, and Uncertainty Analysis for Engineers, 3rd ed. (New York: Wiley, 2009).

    Book  Google Scholar 

  32. J.R. Salvador, J.Y. Cho, Z. Ye, J.E. Moczygemba, A.J. Thompson, J.W. Sharp, J.D.K. Nig, R. Maloney, T. Thompson, J. Sakamoto, H. Wang, A.A. Wereszczak, and G.P. Meisner, J. Electron. Mater. 42, 1389 (2013).

    Article  Google Scholar 

  33. K. Bartholomé, B. Balke, D. Zuckermann, M. Köhne, M. Müller, K. Tarantik, and J. König, J. Electron. Mater. 43, 1775 (2014).

  34. G.M. Fetene, A Report on Energy Consumption and Range of Battery Electric Vehicles Based on Real-World Driving Data, Department of Transport, Technical University of Denmark, Denmark, 2014. http://www.transport.dtu.dk/english/-/media/Centre/Transport-DTU/Om-Transport-DTU/english/research/Networks/ReportFinal_Energy-Consumption.ashx?la=da&hash=FD10CA98DCA1358D3AA97809871A381600CA4CCB.

Download references

Acknowledgments

The work in this article is done in a joined research program between CEA Tech and Ecole Centrale de Nantes. The authors want to thank the “Region des Pays de la Loire” (in France) for their financial contribution to this study and Mann+Hummel for their technical contributions concerning engine tests and calibration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nour Eddine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nour Eddine, A., Sara, H., Chalet, D. et al. Modeling and Simulation of a Thermoelectric Generator Using Bismuth Telluride for Waste Heat Recovery in Automotive Diesel Engines. J. Electron. Mater. 48, 2036–2045 (2019). https://doi.org/10.1007/s11664-019-06999-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-06999-w

Keywords

Navigation