Skip to main content

Advertisement

Log in

Strain-Tunable Electronic and Optical Properties of Monolayer Germanium Monosulfide: Ab-Initio Study

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the present work, we consider systematically the electronic and optical properties of two-dimensional monolayer germanium monosulfide (GeS) under uniaxial strains along armchair (AC-strain) and zigzag (ZZ-strain) directions. Our calculations show that, at the equilibrium state, the monolayer GeS is a semiconductor with an indirect band gap of 1.82 eV. While monolayer GeS is still an indirect band gap semiconductor under ZZ-strain, an indirect–direct energy gap transition can be found in the monolayer GeS when the AC-strain is applied. The optical spectra of the monolayer GeS have strong anisotropy in the investigated energy range from 0 eV to 8 eV. Based on optical properties, we believe that the monolayer GeS is a potential candidate for applications in energy conversion and optoelectronic technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Sukhovatkin, S. Hinds, L. Brzozowski, and E.H. Sargent, Science 324(5934), 1542 (2009)

    Article  Google Scholar 

  2. L. Xu, M. Yang, S.J. Wang, and Y.P. Feng, Phys. Rev. B 95, 235434 (2017)

    Article  Google Scholar 

  3. L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373 (2014)

    Article  Google Scholar 

  4. L.C. Gomes, A. Carvalho, and A.H. Castro Neto, Phys. Rev. B 94, 054103 (2016)

    Article  Google Scholar 

  5. S. Demirci, N. Avazli, E. Durgun, and S. Cahangirov, Phys. Rev. B 95, 115409 (2017)

    Article  Google Scholar 

  6. S.Z. Karazhanov, P. Ravindran, A. Kjekshus, H. Fjellvag, and B.G. Svensson, Phys. Rev. B 75, 155104 (2007)

    Article  Google Scholar 

  7. L. Huang, F. Wu, and J. Li, J. Chem. Phys. 144, 114708 (2016)

    Article  Google Scholar 

  8. A.M. Cook, B.M. Fregoso, F. de Juan, S. Coh, and J.E. Moore, Nat. Commun. 8, 14176 (2017)

    Article  Google Scholar 

  9. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004)

    Article  Google Scholar 

  10. F. Li, X. Liu, Y. Wang, and Y. Li, J. Mater. Chem. C 4, 2155 (2016)

    Article  Google Scholar 

  11. T. Yabumoto, J. Phys. Soc. Jpn. 13, 559 (1958)

    Article  Google Scholar 

  12. A.K. Singh and R.G. Hennig, Appl. Phys. Lett. 105, 042103 (2014)

    Article  Google Scholar 

  13. D.D. Vaughn, R.J. Patel, M.A. Hickner, and R.E. Schaak, J. Am. Chem. Soc. 132, 15170 (2010)

    Article  Google Scholar 

  14. C. Li, L. Huang, G.P. Snigdha, Y. Yu, and L. Cao, ACS Nano 6, 8868 (2012)

    Article  Google Scholar 

  15. B. Mukherjee, Y. Cai, H.R. Tan, Y.P. Feng, E.S. Tok, and C.H. Sow, ACS Appl. Mater. Interfaces 5, 9594 (2013)

    Article  Google Scholar 

  16. C. Chowdhury, S. Karmakar, and A. Datta, J. Phys. Chem. C 121, 7615 (2017)

    Article  Google Scholar 

  17. H. Wang and X. Qian, 2D Mater. 4, 015042 (2017)

    Article  Google Scholar 

  18. L.C. Gomes, A. Carvalho, and A.H. Castro Neto, Phys. Rev. B 92, 214103 (2015)

    Article  Google Scholar 

  19. L. Makinistian and E.A. Albanesi, Phys. Rev. B 74, 045206 (2006)

    Article  Google Scholar 

  20. S. Zhang, N. Wang, S. Liu, S. Huang, W. Zhou, B. Cai, M. Xie, Q. Yang, X. Chen, and H. Zeng, Nanotechnology 27, 274001 (2016)

    Article  Google Scholar 

  21. G. Guo and G. Bi, Micro Nano Lett. 13, 600 (2018)

    Article  Google Scholar 

  22. K.D. Pham, C.V. Nguyen, H.V. Phuc, T.V. Vu, N.V. Hieu, B.D. Hoi, L.C. Nhan, V.Q. Nha, and N.N. Hieu, Superlattices Microstruct. 120, 501 (2018)

    Article  Google Scholar 

  23. D. Tan, H.E. Lim, F. Wang, N.B. Mohamed, S. Mouri, W. Zhang, Y. Miyauchi, M. Ohfuchi, and K. Matsuda, Nano Res. 10, 546 (2017)

    Article  Google Scholar 

  24. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009)

    Google Scholar 

  25. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  Google Scholar 

  26. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)

    Article  Google Scholar 

  27. V.V. Ilyasov, C.V. Nguyen, I.V. Ershov, and N.N. Hieu, J. Appl. Phys. 117, 174309 (2015)

    Article  Google Scholar 

  28. C.V. Nguyen, N.N. Hieu, and V.V. Ilyasov, J. Electron. Mater. 45, 4038 (2016)

    Article  Google Scholar 

  29. H.V. Phuc, N.N. Hieu, B.D. Hoi, L.T.T. Phuong, N.V. Hieu, and C.V. Nguyen, Superlattices Microstruct. 112, 554 (2017)

    Article  Google Scholar 

  30. H.V. Phuc, N.N. Hieu, B.D. Hoi, L.T.T. Phuong, and C.V. Nguyen, Surf. Sci. 668, 23 (2018)

    Article  Google Scholar 

  31. A. Delin, P. Ravindran, O. Eriksson, and J. Wills, Int. J. Quantum Chem. 69, 349 (1998)

    Article  Google Scholar 

  32. P. Ravindran, A. Delin, B. Johansson, O. Eriksson, and J.M. Wills, Phys. Rev. B 59, 1776 (1999)

    Article  Google Scholar 

  33. M. Elahi, K. Khaliji, S.M. Tabatabaei, M. Pourfath, and R. Asgari, Phys. Rev. B 91, 115412 (2015)

    Article  Google Scholar 

  34. L.C. Gomes, A. Carvalho, and A.C. Neto, Phys. Rev. B 92, 214103 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.01-2017.309 and the Belarusian Scientific Program “Convergence”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Doan V. Thuan or Nguyen N. Hieu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral withregard to jurisdictional claims in published maps and institutionalaffiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, P.T.T., Nguyen, C.V., Thuan, D.V. et al. Strain-Tunable Electronic and Optical Properties of Monolayer Germanium Monosulfide: Ab-Initio Study. J. Electron. Mater. 48, 2902–2909 (2019). https://doi.org/10.1007/s11664-019-06980-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-06980-7

Keywords

Navigation