Skip to main content

Solution-Processed Insulators for Flexible Metal-Insulator-Metal Structures

A Correction to this article was published on 08 April 2019

This article has been updated

Abstract

Repeatable switching hysterisis in metal-insulator-metal devices is commonly attributed to the motion of oxygen vacancies under a sufficiently large external electric field. The resulting memristive behaviour has become a compelling alternative to traditional non-volatile memory device architectures. A room-temperature process for the fabrication of a metal-insulator-metal structure employing niobium pentaoxide (\(\hbox {Nb}_{2}\hbox {O}_{5}\)) as the active layer has been developed, without any annealing of the oxide film. Electrical characterization of the devices shows sharp switching of resistivity. The developed process is very simple, cost-effective and can be implemented on flexible substrates.

Change history

  • 08 April 2019

    In the original article, there is an error in the legend

References

  1. M.T. Penella and M. Gasulla, in 2007 IEEE Instrumentation Measurement Technology Conference IMTC 2007 (2007), pp. 1–5

  2. P.C.P. Chao, IEEE Sens. J. 11(12), 3106 (2011)

    Article  Google Scholar 

  3. H.W. Choi, T. Zhou, M. Singh, and G.E. Jabbour, Nanoscale 7(8), 3338 (2015)

    Article  Google Scholar 

  4. M. Singh, H.M. Haverinen, P. Dhagat, and G.E. Jabbour, Adv. Mater. 22(6), 673 (2010)

    Article  Google Scholar 

  5. R. Deol, H.W. Choi, M. Singh, and G. Jabbour, IEEE Sens. J. 15(6), 3186 (2015)

    Article  Google Scholar 

  6. L. Chua, IEEE Trans. Circuit Theory 18(5), 507 (1971)

    Article  Google Scholar 

  7. Hadiyawarman, F. Budiman, D.G.O. Hernowo, R.R. Pandey, and H. Tanaka, Jpn. J. Appl. Phys. 57(3S2), 03EA06 (2018)

  8. V.K. Nagareddy, M.D. Barnes, F. Zipoli, K.T. Lai, A.M. Alexeev, M.F. Craciun, and C.D. Wright, ACS Nano 11(3), 3010 (2017)

    Article  Google Scholar 

  9. R. Schmitt, J. Spring, R. Korobko, and J.L. Rupp, ACS Nano 11(9), 8881 (2017)

    Article  Google Scholar 

  10. M. Lauters, B. McCarthy, D. Sarid, and G.E. Jabbour, Appl. Phys. Lett. 87(23), 231105 (2005)

    Article  Google Scholar 

  11. C. Yan, and D. Xue, Adv. Mater. 20(5), 1055 (2008)

    Article  Google Scholar 

  12. J.J. Yang, N.P. Kobayashi, J.P. Strachan, M.X. Zhang, D.A.A. Ohlberg, M.D. Pickett, Z. Li, G. Medeiros-Ribeiro, and R.S. Williams, Chem. Mater. 23(2), 123 (2011)

    Article  Google Scholar 

  13. S. Stathopoulos, A. Khiat, M. Trapatseli, S. Cortese, A. Serb, I. Valov, and T. Prodromakis, Sci. Rep. 7(1), 17532 (2017)

    Article  Google Scholar 

  14. H. Sim, D. Choi, D. Lee, S. Seo, M.J. Lee, I.K. Yoo, and H. Hwang, IEEE Electron Device Lett. 26(5), 292 (2005)

    Article  Google Scholar 

  15. S. Spiga, A. Lamperti, C. Wiemer, M. Perego, E. Cianci, G. Tallarida, H. Lu, M. Alia, F. Volpe, and M. Fanciulli, Microelectron. Eng. 85(12), 2414 (2008)

    Article  Google Scholar 

  16. T.V. Kundozerova, A.M. Grishin, G.B. Stefanovich, and A.A. Velichko, IEEE Trans. Electron Devices 59(4), 1144 (2012)

    Article  Google Scholar 

  17. M. Singh, H.M. Haverinen, Y. Yoshioka, and G.E. Jabbour, in Inkjet Technology for Digital Fabrication, ed. by I.M. Hutchings, G. D.rtin (Wiley, 2012), pp. 207–235

  18. N. Gergel-Hackett, B. Hamadani, B. Dunlap, J. Suehle, C. Richter, C. Hacker, and D. Gundlach, IEEE Electron Device Lett. 30(7), 706 (2009)

    Article  Google Scholar 

  19. J. Liu, D. Xue, and K. Li, Nanoscale Res. Lett. 6, 138 (2011)

    Article  Google Scholar 

  20. M.C. Orilall, F. Matsumoto, Q. Zhou, H. Sai, H.D. Abruña, F.J. DiSalvo, and U. Wiesner, J. Am. Chem. Soc. 131(26), 9389 (2009)

    Article  Google Scholar 

  21. M. Ristić, S. Popović, and S. Musić, Mater. Lett. 58(21), 2658 (2004)

    Article  Google Scholar 

  22. M. Wang, J. Han, Y. Hu, R. Guo, and Y. Yin, ACS Appl. Mater. Interfaces 8(43), 29511 (2016)

    Article  Google Scholar 

  23. J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, and R.S. Williams, Nanotechnology 20(21), 215201 (2009)

    Article  Google Scholar 

  24. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, and R.S. Williams, Nat. Nanotechnol. 3(7), 429 (2008)

    Article  Google Scholar 

  25. D.B. Strukov, G.S. Snider, D.R. Stewart, and R.S. Williams, Nature 453(7191), 80 (2008)

    Article  Google Scholar 

  26. A.M. Grishin, A.A. Velichko, and A. Jalalian, Appl. Phys. Lett. 103(5), 053111 (2013)

    Article  Google Scholar 

  27. S. Slesazeck, A. Ascoli, H. Mähne, R. Tetzlaff, and T. Mikolajick, in Nonlinear Dynamics of Electronic Systems (Springer, Cham, 2014), Communications in Computer and Information Science, pp. 156–164

  28. M.D. Pickett, and R.S. Williams, Nanotechnology 23(21), 215202 (2012)

    Article  Google Scholar 

  29. M.K. Hota, M.K. Bera, and M.K. Bera, J. Nanosci. Nanotechnol. 14(5), 3538 (2014)

    Article  Google Scholar 

  30. K. Fujiwara, T. Nemoto, M.J. Rozenberg, Y. Nakamura, and H. Takagi, Jpn. J. Appl. Phys. 47(8R), 6266 (2008)

    Article  Google Scholar 

  31. H.D. Lee, B. Magyari-Köpe, and Y. Nishi, Phys. Rev. B 81(19), 193202 (2010)

    Article  Google Scholar 

  32. A.A. Ansari, and A. Qadeer, J. Phys. D Appl. Phys. 18(5), 911 (1985)

    Article  Google Scholar 

  33. K. Lazarova, M. Vasileva, G. Marinov, and T. Babeva, Opt. Laser Technol. 58, 114 (2014)

    Article  Google Scholar 

  34. H. Sim, D. Choi, D. Lee, M. Hasan, C.B. Samantaray, and H. Hwang, Microelectron. Eng. 80, 260 (2005)

    Article  Google Scholar 

  35. H. Baek, C. Lee, J. Choi, and J. Cho, Langmuir 29(1), 380 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

AM and VA acknowledge support from the Visweswaraya Ph.D. Fellowship, and BM, AD, and MS acknowledge support from Young Faculty Research Fellowship, both from Digital India Corporation. CKJ acknowledges Ph.D. Fellowship support from Ministry of Human Resource & Development. SS, BM and MS acknowledge support from Ministry of Electronics and Information Technology (9(2)/2012-MDD). MS acknowledges support from a grant from the Science and Engineering Research Board (SB/S3/EECE/095/2014). BM and MS acknowledge support under SR/FST/ETII-061/2014 from the Department of Science & Technology. The authors would also like to acknowledge access to facilities in the Nanoscale Research Facility (NRF) and Central Research Facility (CRF) at IIT Delhi, and useful discussions with Mr. Rajinder Singh Deol and Dr. Henam Sylvia Devi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhusudan Singh.

Ethics declarations

Conflcit of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Saha, S., Jha, C.K. et al. Solution-Processed Insulators for Flexible Metal-Insulator-Metal Structures. J. Electron. Mater. 48, 3383–3387 (2019). https://doi.org/10.1007/s11664-019-06975-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-06975-4

Keywords

  • MIM structures
  • sol–gel
  • spin coating
  • non-volatile memory
  • flexible electronics