Skip to main content

Detailed Transient Multiphysics Model for Fast and Accurate Design, Simulation and Optimization of a Thermoelectric Generator (TEG) or Thermal Energy Harvesting Device


Described herein is a detailed and comprehensive multiphysics model of a thermoelectric generator (TEG). The one-dimensional model uses electrical–thermal analogies solved for transient response using SPICE. There are many advantages and applications of thermoelectric generators. Wider use and application advancements are generally limited by the tools available for engineering and scientific studies. Currently, available modeling tools are limited by some combination of speed, platform capabilities, or missing physics that are not used or assumed to be negligible. The TEG module model herein is made up of two sub-models, the thermoelement model and the non-thermoelement model. Rather than a lumped thermoelement model, the model herein makes use of distributed physics that include the following: Thomson effect, temperature dependence, mass, Joule heat, thermal resistance, Seebeck effect, and electrical resistance. The non-thermoelement model takes into account temperature dependence and simulates Joule heat generation, thermal resistances, thermal and electrical interface resistances, and mass for and between the ceramic, copper, and solder. The comprehensive model herein was correlated to experimental data that simultaneously varied electrical current and hot and cold side temperatures with time. Very minimal adjustments to reported thermoelectric properties were required to almost perfectly match the experimental transient power output. The effects of the non-thermoelement model, distributed Thomson effect model and distributed temperature dependent property model were quantified. The model ran very quickly, taking 2.5 real-time seconds to run a 4000 s transient simulation.


  1. A. Piggott, How Thermoelectric Generators Work. (Applied Thermoelectric Solutions LLC), Accessed 1 Nov 2018.

  2. D. Champier, in 3rd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2015)(2017), pp. 167–181.

  3. A. Piggott, Introduction to Thermoelectrics and Medical Applications. (Applied Thermoelectric Solutions LLC), Accessed 1 Jan 2018.

  4. E.E. Antonova and D.C. Looman, in 24th International Conference Thermoelectrics (ICT) (2005), pp. 200–203.

  5. W. Lia, M.C. Paula, A. Montecuccoa, A.R. Knoxa, J. Sivitera, N. Sellamib, X. long Mengb, E.F. Fernandezb, T.K. Mallickb, P. Mullena, A. Ashrafa, A. Samarellia, L.F. Llina, D.J. Paula, D.H. Gregoryc, M. Gaod, T. Sweetd, F. Azoughe, R. Lowndese, and R. Freere, in Energy Procedia (2015), pp. 633–638.

  6. M. Jaegle, in Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover (2008).

  7. O. Sullivan, B. Alexandrov, S. Mukhopadhyay, and S. Kumar, J. Electron. Packag. 135, 3 (2013).

    Article  Google Scholar 

  8. M. Karri, Ph.D. Thesis, Clarkson University (2011).

  9. D.T. Crane, J. Electron. Mater. 40, 5 (2011).

    Article  Google Scholar 

  10. A.J. Piggott and J.S. Allen, ECS J. Solid State Sci. Technol. 6, 3 (2017).

    Google Scholar 

  11. A.J. Piggott, Masters Thesis, Michigan Technological University (2015).

  12. A.J. Piggott and J.S. Allen, ECS J. Solid State Sci. Technol. 6, 12 (2017).

    Google Scholar 

  13. D. Mitrani, J. Salazar, A. Turi, M.J. Garcia, and J.A. Chavez, Microelectron. J. 40, 1406 (2009).

    Article  Google Scholar 

  14. M. Chen, L. Rosendahl, I. Bach, T. Condra, and J.K. Pedersen, in International Conference on Thermoelectrics (ICT) (2006), pp. 214–219.

  15. A. Mirocha and P. Dziurdzia, in ICSES 2008 International Conference on Signals and Electronic Systems (2008), pp. 317–320.

  16. J.A. Chavez, J.A. Ortega, J. Salazar, A. Turo and M.J. Garcia, in Conference Record: IEEE Instrumentation and Measurement Technology (2000), pp. 1019–1023.

  17. S. Lineykin and S. Ben-Yaakov, in 23rd IEEE Convention of Electrical and Electronics Engineers in Israel (2004), pp. 346–349.

  18. S. Lineykin, IEEE Power Electron. Lett. 3, 2 (2005).

    Article  Google Scholar 

  19. L.W. Nagel and D.O. Pederson, SPICE (Simulation Program with Integrated Circuit Emphasis), Technical Report, University of California, Berkeley, (1973).

  20. A.F. Robertson and D. Gross, J. Res. Natl. Bur. Stand. 61, 2 (1958).

    Article  Google Scholar 

  21. T. Wey, in IEEE North-East Workshop on Circuits and Systems (2006), pp. 277–280.

  22. S. Kima, S. Cho, N. Kim, and J. Park, IEICE Electron. Expr. 7, 20 (2010).

    Article  Google Scholar 

  23. V. Milanovic, M. Hopcroft, C. Zincke, M. Zaghloul, and K.S.J. Pister, Therminic 2000, International Workshop on Thermal Investigations of ICs and Systems (2000), pp. 1–5.

  24. N.Q. Nguyen and K.V. Pochiraju, Appl. Therm. Eng. 51, 1 (2013).

    Article  Google Scholar 

  25. R. Lamba and S.C. Kaushik, Energy Convers. Manag. 144, 388 (2017).

    Article  Google Scholar 

  26. W. Thomson, Proc. R. Soc. Lond. 7, 49 (1854).

    Google Scholar 

  27. H. Lee, Energy 66, 56 (2013).

    Google Scholar 

  28. D.M. Avadhanulu and D.P. Kshirsagar, A Textbook of Engineering Physics (Ram Nagar, S. Chand & Company PVT. LTD, 2008), pp. 435–446.

    Google Scholar 

  29. S. Riffat, X. Ma, and R. Wilson, Appl. Therm. Eng. 26, 5 (2006).

    Google Scholar 

  30. GM250-127-14-10 Thermoelectric generator module data sheet, European Thermodynamics Limited (2017).

  31. The National Institutes of Health (NIH), Pubchem Compound Database (Compound Summary for CID 6379155 Bismuth Telluride), Accessed Jan 2018.

  32. A.S. Pashinkin, A.S. Malkova, and M.S. Mikhailova, Izv. Vyssh. Uchebn. Zaved., Elektron. 5, 78 (2007).

  33. Y.I. Shterna, S. Malkovaa, and S. Pashinkin, Inorg. Mater. (2008).

  34. Purdue University, Volume 4, (The Macmillan Company, Collier-Macmillan Limited, New York, 1967), pp. 30–40.

  35. T.L. Bergman, A.S. Lavine, F.P. Incropera, and D.P. Dewitt, Fundamentals of Heat and Mass Transfer, 7th Edn (Wiley, New York, 2011), p. 983.

    Google Scholar 

  36. Melcor, Thermoelectric Handbook, Unknown.

  37. Alasir, Solder alloys: physical and mechanical properties, Accessed 2 Jan 2018.

  38. Matweb Material Property Data, Indium corp. indalloy 106 (sn63) sn-pb solder alloy, Accessed 18 Feb 2018.

  39. J.G. Bai, Z.Z. Zhang, G.Q. Lu, and D.P.H. Hasselman, Int. J. Thermophys. 26, 5 (2005).

    Article  Google Scholar 

  40. C.N. Liao, C.H. Lee, and W.J. Chen, Electrochem. Solid State Lett. 10, 9 (2007).

    Google Scholar 

  41. L.W. da Silva and M. Kaviany, Int. J. Heat Mass Transf. 47, 2417 (2004).

    Article  Google Scholar 

  42. R.A. Matula, J. Phys. Chem. Ref. Data 8, 1147 (1979).

    Article  Google Scholar 

Download references


Thank you to Applied Thermoelectric Solutions LLC for the generous support in making this TEG model and project a reality.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alfred Piggott.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Piggott, A. Detailed Transient Multiphysics Model for Fast and Accurate Design, Simulation and Optimization of a Thermoelectric Generator (TEG) or Thermal Energy Harvesting Device. J. Electron. Mater. 48, 5442–5452 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Thermoelectric
  • thermoelectric generator
  • TEG
  • thermal energy harvesting
  • Thomson effect
  • Seebeck effect
  • Peltier effect
  • module
  • transient
  • device