Skip to main content
Log in

Comparative Analysis of Mixed CNTs and MWCNTs as VLSI Interconnects for Deep Sub-micron Technology Nodes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This research paper presents a performance analysis of the mixed carbon nanotube (CNT) as an interconnect for very large-scale integration (VLSI) circuits at deep sub-micron (DSM) technology nodes. The mixed CNT interconnect is a combination of multiwall CNTs (MWCNTs) and single-walled CNTs (SWCNTs). Using hierarchical modeling, a multiconductor circuit model is proposed for the mixed CNT bundle at global-level interconnect lengths. Due to the insertion of SWCNTs in a MWCNT interconnect, the overall density of the conducting tubes in the proposed mixed CNT interconnect structure increases, thereby decreasing the overall resistance and inductance of the mixed CNTs. The performance of the proposed mixed CNT interconnect is estimated in terms of delay and power delay product (PDP) for different technology nodes (32 nm, 22 nm, and 16 nm) at different interconnect lengths. For comparative analysis, a similar analysis is performed using MWCNT bundle interconnects. The comparative results show that there is reduction in the overall propagation delay and PDP for the proposed mixed CNTs compared to MWCNTs as the interconnect material for DSM technology nodes at global-level interconnect lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Srivastava, H. Li, F. Kreupl, and K. Banerjee, IEEE Trans. Nanotechnol. 8, 542 (2009).

    Article  Google Scholar 

  2. K. Sandha and S. Sharma, J. Nanoelectron Optoelectron 13, 357 (2018).

    Article  Google Scholar 

  3. M. Nihei, D. Kondo, A. Kawabata, S. Sato, H. Shioya, and M. Sakaue, in Interconnect Technology Conference Proceedings (2005), pp. 234–236.

  4. K. Singh and B. Raj, J. Comput. Electron. 14, 469 (2015).

    Article  Google Scholar 

  5. P.G. Collins, M. Hersam, M. Arnold, R. Martel, and P. Avouris, Phys. Rev. Lett. 86, 3128 (2001).

    Article  Google Scholar 

  6. A. Naeemi and J.D. Meindl, IEEE Electron Device Lett. 27, 338 (2006).

    Article  Google Scholar 

  7. M. Tang and J. Mao, IEEE Trans. Electromagn. Compat. 57, 232 (2015).

    Article  Google Scholar 

  8. D. Rossi, J.M. Cazeaux, C. Metra, and F. Lombardi, IEEE Trans. Nanotechnol. 6, 133 (2007).

    Article  Google Scholar 

  9. P. Mallick, in Conference on Communication and Signal Processing (2016), pp. 0987–0990.

  10. B. Bourlon, C. Miko, L. Forro, D.C. Glattli, and A. Bachtold, Phys. Rev. Lett. 93, 176806 (2004).

    Article  Google Scholar 

  11. M.S. Sarto and A. Tamburrano, IEEE Trans. Nanotechnol. 9, 82 (2010).

    Article  Google Scholar 

  12. P. Litoria, K.S. Sandha, and A. Kansal, J. Mater. Sci. Mater. Electron. 28, 4818 (2016).

    Article  Google Scholar 

  13. International Technology Roadmap for Semiconductors (2013) [Online], http://public.itrs.net. Accessed 29 April 2018.

  14. H. Li, W.Y. Yin, K. Banerjee, and J.F. Mao, IEEE Trans. Electron Devices 55, 1328 (2008).

    Article  Google Scholar 

  15. P.J. Burke, IEEE Trans. Nanotechnol. 1, 129 (2002).

    Article  Google Scholar 

  16. Y.G. Yoon, P. Delaney, and S.G. Louie, Phys. Rev. B 66, 073407 (2002).

    Article  Google Scholar 

  17. M. Tang, J. Lu, and J. Mao, in Microwave Conference Proceedings (2012), pp. 1247–1249.

  18. P.L. McEuen, M.S. Fuhrer, and H. Park, IEEE Trans. Nanotechnol. 99, 78 (2002).

    Article  Google Scholar 

  19. B.Q. Wei, R. Vajtai, and P.M. Ajayan, Appl. Phys. Lett. 79, 1172 (2001).

    Article  Google Scholar 

  20. A. Maffucci, G. Miano, and F. Villone, IEEE Trans. Adv. Packag. 31, 692 (2008).

    Article  Google Scholar 

  21. K. Singh and B. Raj, J. Electron. Mater. 44, 4825 (2015).

    Article  Google Scholar 

  22. M.R. Baklanov and K. Maex, Phys. Eng. Sci. 364, 201 (2006).

    Article  Google Scholar 

  23. Predictive Technology Model (PTM), http://ptm.asu.edu. Accessed 29 April 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karmjit Singh Sandha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandha, K.S., Thakur, A. Comparative Analysis of Mixed CNTs and MWCNTs as VLSI Interconnects for Deep Sub-micron Technology Nodes. J. Electron. Mater. 48, 2543–2554 (2019). https://doi.org/10.1007/s11664-019-06930-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-06930-3

Keywords

Navigation