Skip to main content
Log in

Synthesis of MnS from Single- and Multi-Source Precursors for Photocatalytic and Battery Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanomaterials have been shown to possess exclusive properties in heterogeneous catalysis as evidenced by studies dedicated to the synthesis of transition-metal-containing nanomaterials. However, the series of nanomaterials which have been synthesized are mostly oxides. A ligand, 1-(2-chloro-4-nitrophenyl)-3,3-chlorobenzoyl (Tu), has been created through which MnS nanoparticles (NPs) and nanosheets (NSs) have been successfully synthesized, initially from a single-source precursor (SS) and then from multi-source precursors, respectively. The main objective of this article was to identify the differences in the morphologies of the materials synthesized from the two different sources, with photodegradation and battery applications performed just with MnS NPs (synthesized by the SS method). A preliminary study has been carried out on the photocatalytic properties and battery applications of the recently synthesized MnS employing the SS method. MnS NPs demonstrated higher activity than their bulk sheet for the photocatalytic degradation of four different dyes, methyl violet, methylene green, methylene blue, and rhodamine B, under visible-light irradiation. More significantly, the preparation method in the present work might be applied to other metal chalcogenide nanomaterials for various new applications. More notably, battery applications have been evaluated for MnS NPs (synthesized by the SS method) by testing their electrochemical discharge/charge at voltage limits of − 0.2 to 3.2 V versus Li/Li+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.K. Furdyna, J. Appl. Phys. 64, R29 (1988).

    Article  CAS  Google Scholar 

  2. O. Goede and W. Heimbrodt, Phys. Status Solidi B 146, 11 (1988).

    Article  CAS  Google Scholar 

  3. K. Hass and H. Ehrenreich, J. Cryst. Growth 86, 8 (1988).

    Article  CAS  Google Scholar 

  4. B. Larson, K. Hass, H. Ehrenreich, and A. Carlsson, Solid State Commun. 56, 347 (1985).

    Article  CAS  Google Scholar 

  5. J. Lu, P. Qi, Y. Peng, Z. Meng, Z. Yang, W. Yu, and Y. Qian, Chem. Mater. 13, 2169 (2001).

    Article  CAS  Google Scholar 

  6. J. Furdyna, J. Appl. Phys. 53, 7637 (1982).

    Article  CAS  Google Scholar 

  7. N. Brandt and V.V. Moshchalkov, Adv. Phys. 33, 193 (1984).

    Article  CAS  Google Scholar 

  8. R.R. Galazka, J. Cryst. Growth 72, 364 (1985).

    Article  CAS  Google Scholar 

  9. J. Furdyna, J. Vac. Sci. Technol. A 4, 2002 (1986).

    Article  CAS  Google Scholar 

  10. S. Kennedy, K. Harris, and E. Summerville, J. Solid State Chem. 31, 355 (1980).

    Article  CAS  Google Scholar 

  11. D. Chen, H. Quan, Z. Huang, and L. Guo, ChemElectroChem 2, 1314 (2015).

    Article  CAS  Google Scholar 

  12. S. Furuseth and A. Kjekshus, Acta Chem. Scand. 19, 95 (1965).

    Article  CAS  Google Scholar 

  13. M. Okajima and T. Tohda, J. Cryst. Growth 117, 810 (1992).

    Article  CAS  Google Scholar 

  14. B. Skromme, Y. Zhang, D.J. Smith, and S. Sivananthan, Appl. Phys. Lett. 67, 2690 (1995).

    Article  CAS  Google Scholar 

  15. P. Roy, S. Berger, and P. Schmuki, Angew. Chem. Int. Ed. 50, 2904 (2011).

    Article  CAS  Google Scholar 

  16. S. Liu, J. Yu, and M. Jaroniec, J. Am. Chem. Soc. 132, 11914 (2010).

    Article  CAS  Google Scholar 

  17. X.-H. Li, J. Zhang, X. Chen, A. Fischer, A. Thomas, M. Antonietti, and X. Wang, Chem. Mater. 23, 4344 (2011).

    Article  CAS  Google Scholar 

  18. Y. Chen, L. Wang, G.M. Lu, X. Yao, and L. Guo, J. Mater. Chem. 21, 5134 (2011).

    Article  CAS  Google Scholar 

  19. G. Liu, H.G. Yang, X. Wang, L. Cheng, J. Pan, G.Q. Lu, and H.-M. Cheng, J. Am. Chem. Soc. 131, 12868 (2009).

    Article  CAS  Google Scholar 

  20. T. Zhou, J. Hu, and J. Li, Appl. Catal. B 110, 221 (2011).

    Article  CAS  Google Scholar 

  21. J. Xiong, G. Cheng, Z. Lu, J. Tang, X. Yu, and R. Chen, CrystEngComm 13, 2381 (2011).

    Article  CAS  Google Scholar 

  22. Z. Liu, H. Bai, and D. Sun, Appl. Catal. B. 104, 234 (2011).

    Article  CAS  Google Scholar 

  23. S.M. Oh, S.W. Oh, C.S. Yoon, B. Scrosati, K. Amine, and Y.K. Sun, Adv. Funct. Mater. 20, 3260 (2010).

    Article  CAS  Google Scholar 

  24. J. Li, L. Zhang, L. Zhang, W. Hao, H. Wang, Q. Qu, and H. Zheng, J. Power Sources 249, 311 (2014).

    Article  CAS  Google Scholar 

  25. T.-F. Yi, Y.-R. Zhu, X.-D. Zhu, J. Shu, C.-B. Yue, and A.-N. Zhou, Ionics 15, 779 (2009).

    Article  CAS  Google Scholar 

  26. K. Zaghib, M. Trudeau, A. Guerfi, J. Trottier, A. Mauger, R. Veillette, and C. Julien, J. Power Sources 204, 177 (2012).

    Article  CAS  Google Scholar 

  27. W. Hussain, A. Badshah, R.A. Hussain, M.A. Aleem, A. Bahadur, S. Iqbal, M.U. Farooq, and H. Ali, Mater. Chem. Phys. 194, 345 (2017).

    Article  CAS  Google Scholar 

  28. S.A. Bakar and C. Ribeiro, J. Mol. Catal. Chem. 412, 78 (2016).

    Article  CAS  Google Scholar 

  29. S.A. Bakar and C. Ribeiro, RSC Adv. 6, 36516 (2016).

    Article  CAS  Google Scholar 

  30. C. Avril, V. Malavergne, R. Caracas, B. Zanda, B. Reynard, E. Charon, E. Bobocioiu, F. Brunet, S. Borensztajn, and S. Pont, Meteorit. Planet. Sci. 48, 1415 (2013).

    Article  CAS  Google Scholar 

  31. M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, J. Lee, and M.H. Cho, J. Mater. Chem. A 2, 637 (2014).

    Article  CAS  Google Scholar 

  32. S. Kansal, M. Singh, and D. Sud, J. Hazard. Mater. 141, 581 (2007).

    Article  CAS  Google Scholar 

  33. Y. Guo, X. Shi, J. Zhang, Q. Fang, L. Yang, F. Dong, and K. Wang, Mater. Lett. 86, 146 (2012).

    Article  CAS  Google Scholar 

  34. H. Gerischer, Solar Energy Conversion, ed. B.O. Seraphin (Berlin, Heidelberg: Springer, 1979), pp. 115–172.

  35. G. Panthi, N.A. Barakat, K.A. Khalil, A. Yousef, K.-S. Jeon, and H.Y. Kim, Ceram. Int. 39, 1469 (2013).

    Article  CAS  Google Scholar 

  36. F. Zhang and S.S. Wong, Chem. Mater. 21, 4541 (2009).

    Article  CAS  Google Scholar 

  37. G. Lin, J. Zheng, and R. Xu, J. Phys. Chem. C 112, 7363 (2008).

    Article  CAS  Google Scholar 

  38. A.K. Dutta, S.K. Maji, D.N. Srivastava, A. Mondal, P. Biswas, P. Paul, and B. Adhikary, ACS Appl. Mater. Interfaces 4, 1919 (2012).

    Article  CAS  Google Scholar 

  39. D. Chen, H. Quan, G.S. Wang, and L. Guo, ChemPlusChem 78, 843 (2013).

    Article  CAS  Google Scholar 

  40. Z. Tang, N.A. Kotov, and M. Giersig, Science 297, 237 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Badshah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, W., Malik, H., Hussain, R.A. et al. Synthesis of MnS from Single- and Multi-Source Precursors for Photocatalytic and Battery Applications. J. Electron. Mater. 48, 2278–2288 (2019). https://doi.org/10.1007/s11664-019-06929-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-06929-w

Keywords

Navigation