Skip to main content

Advertisement

Log in

Design and Analysis of a Dual-Permanent-Magnet-Excited Machine for Low-Speed Large-Torque Applications

  • 5th International Conference of Asian Union of Magnetics Societies
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper proposes a dual-permanent-magnet-excited machine (DPMEM). It employs three sets of permanent magnets (PMs). The first set of PMs is magnetized radially, and located among the rotor slots. The second set is also magnetized radially, while equipped under the short stator iron teeth. The third set is magnetized circumferentially, and deployed in the slots formed by the long stator iron teeth and the second set of PMs. Two adjacent PMs magnetized circumferentially have opposite directions of magnetization, resulting in the so-called flux-focusing effect. Compared with the existing DPMEMs, the torque density of the proposed machine can be improved significantly, so as to exhibit promising potential for low-speed large-torque applications. Its operation principle is revealed by studying field harmonics in the air gap. The influences on overall performance of the proposed machine arising from the magnetization patterns, slot-pole combination and parameters are also studied by using the finite element method (FEM). Comparative study on the different machines formed by the combination of the three sets of PMs is performed by using the FEM. The results indicate that the proposed type of DPMEM contains six detailed types of PM machines, and can offer high torque density with low torque ripple, a high power factor and efficiency when compared with the six PM machines. Moreover, the magnetization pattern A or E and the ratio of p1 and p2 close to 1 are the best choice when designing this machine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.L. Li, K.T. Chau, M. Cheng, B. Kim, and R.D. Lorenz, IEEE Trans. Magn. 51, 1 (2015).

    Google Scholar 

  2. Y.T. Gao, R.H. Qu, D.W. Li, and F.X. Chen, IEEE Trans. Magn. 53, 1689 (2012).

    Google Scholar 

  3. Y.D. Deng, W. Fan, K. Ling, and C.Q. Su, J. Electron. Mater. 41, 1698 (2012).

    Article  Google Scholar 

  4. J.M. Silveyra, P. Xu, V. Keylin, V. DeGeorge, A. Leary, and M.E. McHenry, J. Electron. Mater. 45, 219 (2016).

    Article  Google Scholar 

  5. O. Lyan, V. Jankunas, E. Guseinoviene, A. Pasilis, A. Senulis, A. Knolis, and E. Kurt, J. Electron. Mater. 47, 4437 (2018).

    Article  Google Scholar 

  6. X.L. Li, K.T. Chau, and Y.B. Wang, Energies 9, 1 (2016).

    Google Scholar 

  7. B. Kin, Energies 10, 1 (2017).

    Google Scholar 

  8. B. Kim and T.A. Lipo, IEEE Trans. Ind. Appl. 50, 3656 (2014).

    Article  Google Scholar 

  9. W. Zhao, J. Zheng, J. Wang, G. Liu, J. Zhao, and Z. Fang, IEEE Trans. Ind. Electron. 63, 2072 (2016).

    Article  Google Scholar 

  10. L. Xu, G. Liu, W. Zhao, Y. Yang, and R. Cheng, IEEE Trans. Ind. Electron. 64, 179 (2017).

    Article  Google Scholar 

  11. S. Jia, R. Qu, J. Li, D. Li, and W. Kong, IEEE Trans. Magn. 53, 1 (2017).

    Article  Google Scholar 

  12. H. Yang, H.Y. Lin, Z.Q. Zhu, S.H. Fang, and Y.K. Huang, Energies 9, 1 (2016).

    Google Scholar 

  13. R. Hosoya and S. Shimomura, in 8th International Conference on Power ElectronicsECCE Asia (2011), pp. 2208–2215.

  14. R. Hosoya, H. Shimada, and S. Shimomura, in IEEE Energy Conversion Congress and Exposition (2011), pp. 2790–2797.

  15. S. Kazuhiro, R. Hosoya, and S. Shimomura, in 15th International Conference on Electrical Machines and Systems (2012), pp. 1–6.

  16. L. Jian, Y. Shi, C. Liu, G. Xu, Y. Gong, and C.C. Chan, IEEE Trans. Magn. 49, 2381 (2013).

    Article  Google Scholar 

  17. W. Zhao, X. Sun, J. Ji, and G. Liu, IEEE Trans. Appl. Supercond. 26, 1 (2016).

    Google Scholar 

  18. Q. Wang and S. Niu, IEEE Trans. Energy Convers. 32, 424 (2017).

    Article  Google Scholar 

  19. Q. Wang, S. Niu, and X. Luo, IEEE Trans. Ind. Electron. 64, 6908 (2017).

    Article  Google Scholar 

  20. Y. Shi, S. Niu, J. Wei, L. Jian, and R. Liu, IEEE Trans. Magn. 51, 1 (2015).

    Google Scholar 

  21. S. Niu, S.L. Ho, and W.N. Fu, IEEE Trans. Magn. 50, 805 (2014).

    Article  Google Scholar 

  22. L. Jian, Y. Shi, J. Wei, Y. Zheng, and Z. Deng, Energies 8, 10127 (2015).

    Article  Google Scholar 

  23. K. Xie, D. Li, R. Qu, and Y. Gao, IEEE Trans. Magn. 53, 1 (2017).

    Article  Google Scholar 

  24. C. Shi, D. Li, R. Qu, H. Zhang, Y. Gao, and Y. Huo, IEEE Trans. Magn. 53, 1 (2017).

    Article  Google Scholar 

  25. D.K. Jang and J.H. Chang, IEEE Trans. Magn. 50, 877 (2014).

    Article  Google Scholar 

  26. K. Atallah, S.D. Calverley, and D. Howe, in IEE ProceedingsElectric Power Applications (2001), pp. 135–143.

  27. Y. Shi, L. Jian, J. Wei, Z. Shao, W. Li, and C.C. Chan, IEEE Trans. Ind. Electron. 63, 1425 (2016).

    Article  Google Scholar 

  28. G. Peng, J. Wei, Y. Shi, Z. Shao, and L. Jian, Energies 11, 1 (2018).

    Google Scholar 

  29. L. Jian, Y. Shi, J. Wei, and Y. Zheng, J. Appl. Phys. 11, 17A713-1 (2015).

    Google Scholar 

  30. X. Zhu, J. Ji, L. Xu, and M. Kang, IEEE Trans. Appl. Supercond. 28, 1 (2018).

    Google Scholar 

  31. W. Hua and M. Cheng, in CES/IEEE 5th International Power Electronics and Motion Control Conference (2006), pp. 1–5.

  32. M. Dou and R. Fu, in 15th International Conference on Electrical Machines and Systems (2012), pp. 1–5.

  33. Y. Shi and L. Jian, Energies 11, 1 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Jian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Wei, J., Deng, Z. et al. Design and Analysis of a Dual-Permanent-Magnet-Excited Machine for Low-Speed Large-Torque Applications. J. Electron. Mater. 48, 1400–1411 (2019). https://doi.org/10.1007/s11664-018-6809-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6809-1

Keywords

Navigation