Skip to main content
Log in

X-ray Diffraction Line Profile Analysis of Undoped and Se-Doped SnS Thin Films Using Scherrer’s, Williamson–Hall and Size–Strain Plot Methods

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An electrochemical route has been employed to prepare undoped and Se-doped SnS thin films. Six samples including undoped and Se-doped SnS thin films were deposited on the fluorine-doped tin oxide glass substrate. An aqueous solution containing 2 mM SnCl2 and 16 mM Na2S2O3 was used in the electrolyte. Different Se-doped SnS samples were prepared by adding the various amounts of 4 mM SeO2 solution into the electrolyte. The applied potential (E), time of deposition process (t), pH, and bath temperature (T) were kept at − 1 V, 30 min, 2.1, and 60°C, respectively. After the completion of the deposition process, x-ray diffraction (XRD) and transmission electron microscopy (TEM) were utilized to characterize the deposited thin films. XRD patterns clearly showed that the synthesized undoped and Se-doped SnS thin films were crystallized in the orthorhombic structure. Using Scherrer’s method, the crystallite size of deposited thin films is calculated. In addition, the crystallite size and lattice strain have been estimated using the modified form of the Williamson–Hall (W–H) method containing a uniform deformation model, a uniform deformation stress model, a uniform deformation energy density model, and by the size–strain plot method (SSP). The shape of SnS crystals was spherical in TEM images. The results showed that there was a good agreement in the particle size obtained from the W–H method and the SSP method with TEM images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.W. Cornelius and O. Thomas, Prog. Mater Sci. 94, 384 (2018).

    Article  Google Scholar 

  2. S.K. Tippabhotla, I. Radchenko, K.N. Rengarajan, G. Illya, V. Handara, M. Kunz, N. Tamura, and A.S. Budiman, Procedia Eng. 139, 123 (2016).

    Article  Google Scholar 

  3. A.S. Budiman, H.A.S. Shin, B.J. Kim, S.H. Hwang, H.Y. Son, M.S. Suh, Q.H. Chung, K.Y. Byun, N. Tamura, M. Kunz, and Y.C. Joo, Microelectron. Reliab. 52, 530 (2012).

    Article  Google Scholar 

  4. D. Ferri, M.A. Newton, M. Di Michiel, S. Yoon, G.L. Chiarello, V. Marchionni, S.K. Matam, M.H. Aguirre, A. Weidenkaff, and F. Wen, Phys. Chem. Chem. Phys. 15, 8629 (2013).

    Article  Google Scholar 

  5. H. Kafashan, Ceram. Int. 45, 334 (2019).

    Article  Google Scholar 

  6. S. Polivtseva, A. Katerski, E. Kärber, I. Oja Acik, A. Mere, V. Mikli, and M. Krunks, Thin Solid Films 633, 179 (2017).

    Article  Google Scholar 

  7. J.-Y. Kang, S.-M. Kwon, S.H. Yang, J.-H. Cha, J.A. Bae, and C.-W. Jeon, J. Alloys Compd. 711, 294 (2017).

    Article  Google Scholar 

  8. H. Kafashan, F. Jamali-Sheini, R. Ebrahimi-Kahrizsangi, and R. Yousefi, Int. J. Miner. Metall. Mater. 23, 348 (2016).

    Article  Google Scholar 

  9. H. Kafashan, F. Jamali-Sheini, M. Azizieh, Z. Balak, M. Cheraghizade, and H. Nasiri Vatan, J. Alloys Compd. 694, 1338 (2017).

    Article  Google Scholar 

  10. H. Kafashan, F. Jamali-Sheini, R. Ebrahimi-Kahrizsangi, and R. Yousefi, J. Alloys Compd. 681, 595 (2016).

    Article  Google Scholar 

  11. H. Kafashan, R. Ebrahimi-Kahrizsangi, F. Jamali-Sheini, and R. Yousefi, Phys. Status Solidi. A 213, 1302 (2016).

    Article  Google Scholar 

  12. S. Banu, S.J. Ahn, Y.J. Eo, J. Gwak, and A. Cho, Sol. Energy 145, 33 (2017).

    Article  Google Scholar 

  13. J. Kois, S. Bereznev, J. Maricheva, and N. Revathi, Mater. Sci. Semicond. Process. 58, 76 (2017).

    Article  Google Scholar 

  14. B.H. Baby, V.M. Vaisakh, and D. Bharathi Mohan, Mater. Today Proc. 3, 2077 (2016).

    Article  Google Scholar 

  15. P. Nwofe, K.R. Reddy, J. Tan, I. Forbes, and R. Miles, Phys. Procedia 25, 150 (2012).

    Article  Google Scholar 

  16. A. Basak, A. Mondal, and U.P. Singh, Mater. Sci. Semicond. Process. 56, 381 (2016).

    Article  Google Scholar 

  17. Y. Kawano, J. Chantana, and T. Minemoto, Curr. Appl. Phys. 15, 897 (2015).

    Article  Google Scholar 

  18. S. Gedi, V.R.M. Reddy, J.-Y. Kang, and C.-W. Jeon, Appl. Surf. Sci. 402, 463 (2017).

    Article  Google Scholar 

  19. F. Alam and V. Dutta, Appl. Surf. Sci. 358, 491 (2015).

    Article  Google Scholar 

  20. G.G. Ninan, C.S. Kartha, and K.P. Vijayakumar, J. Anal. Appl. Pyrol. 120, 121 (2016).

    Article  Google Scholar 

  21. M. Patel, I. Mukhopadhyay, and A. Ray, J. Alloys Compd. 619, 458 (2015).

    Article  Google Scholar 

  22. T. Řičica, L. StŘižík, L. Dostál, M. Bouška, M. Vlček, L. Beneš, T. Wágner, and R. Jambor, Appl. Organomet. Chem. 29, 176 (2015).

    Article  Google Scholar 

  23. K. Hosein, Mater. Res. Express 5, 046417 (2018).

    Article  Google Scholar 

  24. H. Kafashan, Mater. Sci. Semicond. Process. 88, 148 (2018).

    Article  Google Scholar 

  25. H. Kafashan, M. Azizieh, and Z. Balak, Appl. Surf. Sci. 410, 186 (2017).

    Article  Google Scholar 

  26. H. Kafashan, M. Azizieh, and H. Nasiri Vatan, J. Alloys Compd. 686, 962 (2016).

    Google Scholar 

  27. H. Kafashan, and Z. Balak, Spectrochim. Acta, Part A 184, 151 (2017).

    Article  Google Scholar 

  28. C. Gao, H. Shen, and L. Sun, Appl. Surf. Sci. 257, 6750 (2011).

    Article  Google Scholar 

  29. H.Y. He, J. Fei, and J. Lu, Mater. Sci. Semicond. Process. 24, 90 (2014).

    Article  Google Scholar 

  30. C. Gao and H. Shen, Thin Solid Films 520, 3523 (2012).

    Article  Google Scholar 

  31. S. Gedi, V.R. Minnam Reddy, C. Park, J. Chan-Wook, and K.T. Ramakrishna Reddy, Opt. Mater. 42, 468 (2015).

    Article  Google Scholar 

  32. A. Stadler, H.J. Schimper, U. Brendel, D. Topa, A. Basch, and H. Dittrich, Thin Solid Films 519, 7951 (2011).

    Article  Google Scholar 

  33. L.L. Cheng, M.H. Liu, M.X. Wang, S.C. Wang, G.D. Wang, Q.Y. Zhou, and Z.Q. Chen, J. Alloys Compd. 545, 122 (2012).

    Article  Google Scholar 

  34. W. Cai, J. Hu, Y. Zhao, H. Yang, J. Wang, and W. Xiang, Adv. Powder Technol. 23, 850 (2012).

    Article  Google Scholar 

  35. F. Jiang, H. Shen, C. Gao, B. Liu, L. Lin, and Z. Shen, Appl. Surf. Sci. 257, 4901 (2011).

    Article  Google Scholar 

  36. F. Zakerian, and H. Kafashan, Superlattices Microstruct. 124, 92 (2018).

    Article  Google Scholar 

  37. A. Azmand, and H. Kafashan, Ceram. Int. 44, 17124 (2018).

    Article  Google Scholar 

  38. T. Seymour, P. Frankel, L. Balogh, T. Ungár, S.P. Thompson, D. Jädernäs, J. Romero, L. Hallstadius, M.R. Daymond, G. Ribárik, and M. Preuss, Acta Mater. 126, 102 (2017).

    Article  Google Scholar 

  39. T. Ungar, J. Gubicza, G. Ribarik, and A. Borbely, J. Appl. Crystallogr. 34, 298 (2001).

    Article  Google Scholar 

  40. Z. Fan, B. Jóni, L. Xie, G. Ribárik, and T. Ungár, J. Nucl. Mater. 502, 301 (2018).

    Article  Google Scholar 

  41. X. Chen, C. Dejoie, T. Jiang, C.-S. Ku, and N. Tamura, MRS Bull. 41, 445 (2016).

    Article  Google Scholar 

  42. A.S. Budiman, G. Lee, M.J. Burek, D. Jang, S.M.J. Han, N. Tamura, M. Kunz, J.R. Greer, and T.Y. Tsui, Mater. Sci. Eng., A 538, 89 (2012).

    Article  Google Scholar 

  43. I. Radchenko, S.K. Tippabhotla, N. Tamura, and A.S. Budiman, J. Electron. Mater. 45, 6222 (2016).

    Article  Google Scholar 

  44. A. Davydok, T.W. Cornelius, C. Mocuta, E.C. Lima, E.B. Araujo, and O. Thomas, Thin Solid Films 603, 29 (2016).

    Article  Google Scholar 

  45. X.M. Zeng, Z. Du, N. Tamura, Q. Liu, C.A. Schuh, and C.L. Gan, Acta Mater. 134, 257 (2017).

    Article  Google Scholar 

  46. J. Kou, K. Chen, and N. Tamura, Scripta Mater. 143, 49 (2018).

    Article  Google Scholar 

  47. N. Vaxelaire, S. Labat, T.W. Cornelius, C. Kirchlechner, J. Keckes, T. Schulli, and O. Thomas, Acta Mater. 78, 46 (2014).

    Article  Google Scholar 

  48. R. Sivakami, S. Dhanuskodi, and R. Karvembu, Spectrochim. Acta, Part A 152, 43 (2016).

    Article  Google Scholar 

  49. G.H. Khorrami, A. Khorsand Zak, A. Kompany, and R. Yousefi, Ceram. Int. 38, 5683 (2012).

    Article  Google Scholar 

  50. A.S. Budiman, P.R. Besser, C.S. Hau-Riege, A. Marathe, Y.C. Joo, N. Tamura, J.R. Patel, and W.D. Nix, J. Electron. Mater. 38, 379 (2009).

    Article  Google Scholar 

  51. A. Budiman, W. Nix, N. Tamura, B. Valek, K. Gadre, J. Maiz, R. Spolenak, and J. Patel, Appl. Phys. Lett. 88, 233515 (2006).

    Article  Google Scholar 

  52. T.M.K. Thandavan, S.M.A. Gani, C. San Wong, and R.M. Nor, J. Nondestr. Eval. 34, 14 (2015).

    Article  Google Scholar 

  53. J.-M. Zhang, Y. Zhang, K.-W. Xu, and V. Ji, Solid State Commun. 139, 87 (2006).

    Article  Google Scholar 

  54. V. Biju, N. Sugathan, V. Vrinda, and S.L. Salini, J. Mater. Sci. 43, 1175 (2008).

    Article  Google Scholar 

  55. J. Morales, E. Andrade, and M. Miki-Yoshida, Thin Solid Films 366, 16 (2000).

    Article  Google Scholar 

  56. M. Devika, N.K. Reddy, K. Ramesh, K. Gunasekhar, E. Gopal, and K.R. Reddy, J. Electrochem. Soc. 153, G727 (2006).

    Article  Google Scholar 

  57. K. Rogers and P. Daniels, Biomaterials 23, 2577 (2002).

    Article  Google Scholar 

  58. J. Malleshappa, H. Nagabhushana, S.C. Sharma, D.V. Sunitha, N. Dhananjaya, C. Shivakumara, and B.M. Nagabhushana, J. Alloys Compd. 590, 131 (2014).

    Article  Google Scholar 

  59. Y. Rosenberg, V.S. Machavariani, A. Voronel, S. Garber, A. Rubshtein, A. Frenkel, and E. Stern, J. Phys.: Condens. Matter 12, 8081 (2000).

    Google Scholar 

  60. P.K. Jisha, R. Naik, S.C. Prashantha, H. Nagabhushana, S.C. Sharma, H.P. Nagaswarupa, K.S. Anantharaju, B.D. Prasad, and H.B. Premkumar, J. Lumin. 163, 47 (2015).

    Article  Google Scholar 

  61. G.K. Williamson and W.H. Hall, Acta Metall. 1, 22 (1953).

    Article  Google Scholar 

  62. K.-C. Feng, Y.-H. Su, C.-C. Chou, Z.-M. Liu, and L.-W. Chu, Chin. J. Phys. 50, 932 (2012).

    Google Scholar 

  63. K. Reimann and R. Würschum, J. Appl. Phys. 81, 7186 (1997).

    Article  Google Scholar 

  64. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford: Oxford University Press, 1985).

    Google Scholar 

  65. X. He, H. Shen, W. Wang, Z. Wang, B. Zhang, and X. Li, J. Alloys Compd. 556, 86 (2013).

    Article  Google Scholar 

  66. K.A. Aly, N.M. Khalil, Y. Algamal, and Q.M.A. Saleem, J. Alloys Compd. 676, 606 (2016).

    Article  Google Scholar 

  67. M.A. Tagliente and M. Massaro, Nucl. Instrum. Methods Phys. Res., Sect. B 266, 1055 (2008).

    Article  Google Scholar 

  68. A. Khorsand Zak, W.H.A. Majid, M. Ebrahimizadeh Abrishami, R. Yousefi, and R. Parvizi, Solid State Sci. 14, 488 (2012).

    Article  Google Scholar 

  69. Y.T. Prabhu, K.V. Rao, V.S.S. Kumar, and B.S. Kumari, World J. Nano Sci. Eng. 4, 21 (2014).

    Article  Google Scholar 

  70. A. Khorsand Zak, W.H. Abd, M.E.Abrishami Majid, and R. Yousefi, Solid State Sci. 13, 251 (2011).

    Article  Google Scholar 

  71. B. Choudhury and A. Choudhury, Mater. Chem. Phys. 131, 666 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosein Kafashan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kafashan, H. X-ray Diffraction Line Profile Analysis of Undoped and Se-Doped SnS Thin Films Using Scherrer’s, Williamson–Hall and Size–Strain Plot Methods. J. Electron. Mater. 48, 1294–1309 (2019). https://doi.org/10.1007/s11664-018-6791-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6791-7

Keywords

Navigation