We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Effect of Mesoporous TiO 2 Thicknesses on the Performance of Solid-State Dye-Sensitized Solar Cells | SpringerLink

Effect of Mesoporous TiO2 Thicknesses on the Performance of Solid-State Dye-Sensitized Solar Cells

Abstract

We report the fabrication of solid-state dye-sensitized solar cells (ss-DSSCs), using a metal-free organic dye (D102) as a sensitizer. Mesoporous TiO2 acting as a photoanode, is prepared from TiO2 nanopaste followed by drafting light-absorbing dye molecules. Spiro-OMeTAD is used as a hole transport material (HTM), which has a potential role in the energy conversion process of solid-state dye-sensitized solar cells (ss-DSSCs). Here, TiO2 mesoporous films are used with three different thicknesses (∼ 1.5 μm, ∼ 1.7 μm and ∼ 2.0 μm) for the device fabrication. Various characterizations of optimum TiO2 porous film (with the thickness of ∼ 2.0 μm) are performed such as ultraviolet–visible (UV–Vis) transmission, x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and cross-section scanning electron microscopy (SEM). Transmittance analysis reveals that transparency of the TiO2 films ranges from 70% to 80%. The x-ray diffraction (XRD) pattern of TiO2 shows anatase as its major crystalline phase. The porous structure formation of the TiO2 film is confirmed by scanning electron microscopy (SEM) cross section analysis. Photovoltaic performance of the devices was examined in air. Higher power-conversion efficiency (PCE) of 3.5% is obtained with optimum device thickness (∼ 2.3 μm). The device stability test is performed under continuous illumination for 2 h, showing slightly good air and light stability.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. Grätzel, Nature 414, 338 (2001).

    Article  Google Scholar 

  2. 2.

    A.N.M. Green, E. Palomares, S.A. Haque, J.M. Kroon, and R.J. Durrant, J. Phys. Chem. B 109, 12525 (2005).

    Article  Google Scholar 

  3. 3.

    A.F. Nogueira, C. Longo, and M.A. De Paoli, Coord. Chem. Rev. 248, 1455 (2004).

    Article  Google Scholar 

  4. 4.

    X. You, G. Zou, Q. Ye, Q. Zhang, and P. He, J. Mater. Chem. 18, 4704 (2008).

    Article  Google Scholar 

  5. 5.

    J. Xia, N. Masaki, M. Lira-Cantu, Y. Kim, K. Jiang, and S. Yanagida, J. Am. Chem. Soc. 130, 1258 (2008).

    Article  Google Scholar 

  6. 6.

    K.J. Jiang, K. Manseki, Y.H. Yu, N. Masaki, K. Suzuki, Y.I. Song, and S. Yanagida, Adv. Func. Mater. 19, 2481 (2009).

    Article  Google Scholar 

  7. 7.

    S.X. Tan, J. Zhai, M.X. Wan, L. Jiang, and D.B. Zhu, Synth. Met. 137, 1511 (2003).

    Article  Google Scholar 

  8. 8.

    U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, and M. Grätzel, Nature 395, 583 (1998).

    Article  Google Scholar 

  9. 9.

    A. Dubey, N. Adhikari, S. Venkatesan, S. Gu, D. Khatiwada, Q. Wang, L. Mohammad, M. Kumar, and Q. Qiao, Solar Energy Mater. Solar cells 145, 193–199 (2016).

    Article  Google Scholar 

  10. 10.

    E.A. Gaml, A. Dubey, K.M. Reza, M.N. Hasan, N. Adhikari, H. Elbohy, B. Bahrami, H. Zeyada, S. Yang, and Q. Qiao, Solar Energy Mater. Solar Cells 168, 8 (2017).

    Article  Google Scholar 

  11. 11.

    A. Dubey, N. Adhikari, S. Mabrouk, F. Wu, K. Chen, S. Yang, and Q. Qiao, J. Mater. Chem. A 6, 2406 (2018).

    Article  Google Scholar 

  12. 12.

    S. Mabrouk, B. Bahrami, A. Gurung, K.M. Reza, N. Adhikari, A. Dubey, R. Pathak, S. Yang, and Q. Qiao, Sustain. Energy Fuels 1, 2162 (2017).

    Article  Google Scholar 

  13. 13.

    N. Adhikari, A. Dubey, E.A. Gaml, B. Vaagensmith, K.M. Reza, S.A.A. Mabrouk, S. Gu, J. Zai, X. Qian, and Q. Qiao, Nanoscale 8, 2693 (2016).

    Article  Google Scholar 

  14. 14.

    S. Mabrouk, A. Dubey, W. Zhang, N. Adhikari, B. Bahrami, M.N. Hasan, S. Yang, and Q. Qiao, J. Phys. Chem. C 120, 24577 (2016).

    Article  Google Scholar 

  15. 15.

    B.T. Tuân, S.K. Shah, M. Abbas, X. Sallenave, G. Sini, L. Hirsch, and F. Goubard, RSC Adv. 5, 49590 (2015).

    Article  Google Scholar 

  16. 16.

    B.T. Tuân, S.K. Shah, M. Abbas, X. Sallenave, G. Sini, L. Hirsch, and F. Goubard, ChemNanoMat. 1, 203 (2015).

    Article  Google Scholar 

  17. 17.

    H. Zheng, S.K. Shah, M. Abbas, L. Isabelle, T. Rivera, R.M. Almeida, L. Hirsch, T. Toupance, and S. Ravaine, Phot. Nano. Fund. Appl. 21, 13 (2016).

    Article  Google Scholar 

  18. 18.

    W.H. Howie, F. Claeyssens, H. Miura, and L.M. Peter, J. Am. Chem. Soc. 130, 1367 (2008).

    Article  Google Scholar 

  19. 19.

    H.J. Snaith, A. Petrozza, S. Ito, H. Miura, and M. Gratzel, Adv. Funct. Mater. 19, 1810 (2009).

    Article  Google Scholar 

  20. 20.

    J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N.L. Cevey-Ha, C. Yi, M.K. Nazeeruddin, and M. Gratzel, J. Am. Chem. Soc. 133, 18042 (2011).

    Article  Google Scholar 

  21. 21.

    H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Science 345, 542 (2014).

    Article  Google Scholar 

  22. 22.

    J. Melas-Kyriazi, I.K. Ding, A. Marchioro, A. Punzi, B.E. Hardin, G.F. Burkhard, N. Tétreault, M. Grätzel, J.E. Moser, and M.D. Mcgehee, Adv. Energy Mater. 1, 407 (2011).

    Article  Google Scholar 

  23. 23.

    I.K. Ding, N. Tétreault, J. Brillet, B.E. Hardin, E.H. Smith, S.J. Rosenthal, F. Sauvage, M. Grätzel, and M.D. Mcgehee, Adv. Funct. Mater. 19, 2431 (2009).

    Article  Google Scholar 

  24. 24.

    A.C. Arango, S.A. Carter, and P.J. Brock, Appl. Phys. Lett. 74, 1698 (1999).

    Article  Google Scholar 

  25. 25.

    A.C. Arango, L.R. Johnson, V.N. Bliznyuk, Z. Schlesinger, S.A. Carter, and H.H. Hörhold, Adv. Mater. 12, 1689 (2000).

    Article  Google Scholar 

  26. 26.

    J.S. Salafsky, Phys. Rev. B 59, 10885 (1999).

    Article  Google Scholar 

  27. 27.

    A.J. Breeze, Z. Schlesinger, and S.A. Carter, Phys. Rev. B64, 125205 (2001).

    Article  Google Scholar 

  28. 28.

    D. Gebeyehu, C.J. Brabec, F. Padinger, T. Fromherz, S. Spiekermann, N. Vlachopoulosn, F. Kienberger, H. Schindler, and N.S. Sariciftci, Synth. Met. 121, 1549 (2001).

    Article  Google Scholar 

  29. 29.

    M. Kaneko, K. Takayama, S.S. Pandey, W. Takashima, T. Endo, M. Rikukawa, and K. Kaneto, Synth. Met. 12, 11537 (2001).

    Google Scholar 

  30. 30.

    M. Zukalova, A. Zukal, L. Kavan, M.K. Nazeeruddin, P. Liska, and M. Grätzel, Nano Lett. 5, 1789 (2005).

    Article  Google Scholar 

  31. 31.

    K. Hou, B. Tian, F. Li, Z. Bian, D. Zhao, and C. Huang, J. Mater. Chem. 15, 2414 (2005).

    Article  Google Scholar 

  32. 32.

    L. Schmidt-Mende, U. Bach, R. Humphry-Baker, T. Horiuchi, H. Miura, S. Ito, S. Uchida, and M. Grätzel, Adv. Mater. 17, 813 (2005).

    Article  Google Scholar 

  33. 33.

    J.H. Yum, D.P. Hagberg, S.J. Moon, K.M. Karlsson, T. Marinado, L. Sun, A. Hagfeldt, M.K. Nazeeruddin, and M. Grätzel, Angew. Chem. Int. Ed. 48, 1576 (2009).

    Article  Google Scholar 

  34. 34.

    P. Chen, J.H. Yum, F.D. Angelis, E. Mosconi, S. Fantacci, S.J. Moon, R. Humphry-Baker, J. Ko, M.K. Nazeeruddin, and M. Grätzel, Nano Lett. 9, 2487 (2009).

    Article  Google Scholar 

  35. 35.

    T. Horiuchi, H. Miura, and S. Uchida, Chem. Commun. 24, 3036 (2003).

    Article  Google Scholar 

  36. 36.

    A.A. Daniyan, L.E. Umoru, and B. Olunlade, J. Miner. Mater. Charact. Eng. 1, 138 (2013).

    Google Scholar 

  37. 37.

    S.U.M. Khan, M. Al-Shahry, and W.B. Ingler Jr., Science 297, 2243 (2002).

    Article  Google Scholar 

  38. 38.

    C. He, X.Z. Li, N. Graham, and Y. Wang, Appl. Catal. A Gen. 305, 54 (2006).

    Article  Google Scholar 

  39. 39.

    K. Shankar, K.C. Tep, G.K. Mor, and C.A. Grimes, J. Phys. D Appl. Phys. 39, 2361 (2006).

    Article  Google Scholar 

  40. 40.

    W. Shangguan, A. Yoshida, and M. Chen, Solar Energy Mater. Solar Cells 80, 433 (2003).

    Article  Google Scholar 

  41. 41.

    S.-Z. Chen, P.-Y. Zhang, D.-M. Zhuang, and W.-P. Zhu, Catal. Commun. 5, 677 (2004).

    Article  Google Scholar 

  42. 42.

    A.B. Murphy, Sol. Energy Mater. Sol. Cells 91, 1326 (2007).

    Article  Google Scholar 

  43. 43.

    X. Li, H. Zhu, J. Wei, K. Wang, E. Xu, Z. Li, and D. Wu, Appl. Phys. A 97, 341 (2009).

    Article  Google Scholar 

  44. 44.

    A. Elfanaoui, E. Elhamri, L. Boulkaddat, A. Ihlal, K. Bouabid, L. Laanab, A. Taleb, and X. Portier, Int. J. Hydrog. Energy 36, 4130 (2011).

    Article  Google Scholar 

  45. 45.

    D. Chen, F. Huang, Y.B. Cheng, and R.A. Caruso, Adv. Mater. 21, 2206 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

The work has been partially supported by Higher Education Commission (HEC), Pakistan, under the Startup Research Grant Program No. 21-1148/SRGP/R&D/HEC/2016.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Said Karim Shah.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shah, S.K., Ishaq, M., Khattak, S.A. et al. Effect of Mesoporous TiO2 Thicknesses on the Performance of Solid-State Dye-Sensitized Solar Cells. Journal of Elec Materi 48, 696–704 (2019). https://doi.org/10.1007/s11664-018-6774-8

Download citation

Keywords

  • Solid-state dye-sensitized solar cells (ss-DSSCs)
  • photoanode (TiO2)
  • organic dyes (D102)
  • hole transport materials (HTMs)
  • power conversion efficiency (PCE)