Skip to main content
Log in

Synthesis of ZnO Nanosheets Morphology by Ce Doping for Photocatalytic Activity

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Pure and gradient amounts of cerium (Ce)-doped zinc oxide (ZnO) were synthesized by a co-precipitation method and then their photocatalytic activities were inspected. X-ray diffractometer patterns of the pure and Cedoped ZnO nanostructures exhibit hexagonal wurtzite crystal structure. Field emission scanning electron microscopic images show that the ZnO nanospindel morphology is changed into two-dimensional (2D) polar surface-oriented nanosheets by a cerium doping level up to 0.06 mol.%. The red-shift in the near band edge emission and strong defect states emissions (blue and green) are observed in ZnO with respect to the Ce doping level. From the detailed photocatalytic experiments, the maximum methylene blue dye degradation, 86.9%, is observed on the 0.06 mol.% Ce-doped ZnO photocatalyst. The eventual conclusion is that the edges of the (001) crystallographic facet attach to each other to form a ZnO nanosheet morphology at a specific ratio of Ce doping that serves as a good photocatalyst for methylene blue dye degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Peng, S. Qin, W.-S. Wang, and A.-W. Xu, Cryst. Eng. Commun. 15, 6518 (2013).

    Article  Google Scholar 

  2. Y. Liang, N. Guo, L. Li, R. Li, G. Ji, and S. Gan, RSC Adv. 5, 59887 (2015).

    Article  Google Scholar 

  3. G. Vijayaprasath, R. Murugan, S. Palanisamy, N.M. Prabhu, T. Mahalingam, Y. Hayakawa, and G. Ravi, Mater. Res. Bull. 76, 48 (2016).

    Article  Google Scholar 

  4. V. Rajendar, T. Dayakar, K. Shobhan, I. Srikanth, and K.V. Rao, Superlattices Microstruct. 75, 551 (2014).

    Article  Google Scholar 

  5. P.V. Adhyapak, S.P. Meshram, A.A. Pawar, D.P. Amalnerkar, U.P. Mulik, and I.S. Mulla, Ceram. Int. 40, 12105 (2014).

    Article  Google Scholar 

  6. M. Rezaei and A. Habibi-Yangjeh, Appl. Surf. Sci. 265, 591 (2013).

    Article  Google Scholar 

  7. G. Vijayaprasath, R. Murugan, T. Mahalingam, Y. Hayakawa, and G. Ravi, Ceram. Int. 41, 10607 (2015).

    Article  Google Scholar 

  8. Y. Li, J.-C. Liu, X.-X. Lian, T. Lu, and F.-X. Zhao, Trans. Nonferrous Metals Soc. China 25, 3657 (2015).

    Article  Google Scholar 

  9. R. Kumar, A. Umar, G. Kumar, M.S. Akhtar, Y. Wang, and S.H. Kim, Ceram. Int. 41, 7773 (2015).

    Article  Google Scholar 

  10. L. Zhang, X. Liu, C. Geng, H. Fang, Z. Lian, X. Wang, D. Shen, and Q. Yan, Inorg. Chem. 52, 10167 (2013).

    Article  Google Scholar 

  11. S. Chakraborti, S. Sarwar, and P. Chakrabarti, J. Phys. Chem. B 117, 13397 (2013).

    Article  Google Scholar 

  12. S. Zhang, F. Hu, J. He, W. Cheng, Q. Liu, Y. Jiang, Z. Pan, W. Yan, Z. Sun, and S. Wei, J. Phys. Chem. C 117, 24913 (2013).

    Article  Google Scholar 

  13. G. Vijayaprasath, G. Ravi, A.S.H. Hameed, and T. Mahalingam, J. Phys. Chem. C 118, 9715 (2014).

    Article  Google Scholar 

  14. K. Santhi, C. Rani, R.D. Kumar, and S. Karuppuchamy, J. Mater. Sci.: Mater. Electron. 26, 10068 (2015).

    Google Scholar 

  15. G. Vijayaprasath, R. Murugan, S. Asaithambi, G.A. Babu, P. Sakthivel, T. Mahalingam, Y. Hayakawa, and G. Ravi, Appl. Phys. A 122, 1 (2016).

    Article  Google Scholar 

  16. O. Yayapao, T. Thongtem, A. Phuruangrat, and S. Thongtem, Mater. Lett. 90, 83 (2013).

    Article  Google Scholar 

  17. B. Babu, G.R. Sundari, K. Ravindranadh, M.R. Yadav, and R.V.S.S.N. Ravikumar, J. Magn. Magn. Mater. 372, 79 (2014).

    Article  Google Scholar 

  18. Y. Wang, X. Liao, Z. Huang, G. Yin, J. Gu, and Y. Yao, Colloids Surf. A 372, 165 (2010).

    Article  Google Scholar 

  19. W.M.H. Oo, M.D. Mc Cluskey, A.D. Lalonde, and M.G. Norton, Appl. Phys. Lett. 86, 73111 (2005).

    Article  Google Scholar 

  20. M. Ghosh, N. Dilawar, A.K. Bandyopadhyay, and A.K. Raychaudhuri, J. Appl. Phys. 106, 84306 (2009).

    Article  Google Scholar 

  21. L.M. Qiu, F. Liu, L.Z. Zhao, Y. Ma, and J.N. Yao, Appl. Surf. Sci. 252, 4931 (2006).

    Article  Google Scholar 

  22. B. Cao, W. Cai, Y. Li, F. Sun, and L. Zhang, Nanotechnology 16, 1734 (2005).

    Article  Google Scholar 

  23. G.-R. Li, X.-H. Lu, W.-X. Zhao, C.-Y. Su, and Y.-X. Tong, Cryst. Growth Des. 8, 1276 (2008).

    Article  Google Scholar 

  24. S. Anandan and M. Miyauchi, Phys. Chem. Chem. Phys. 13, 14937 (2011).

    Article  Google Scholar 

  25. B.M. Reddy, S. Mehdi, and E.P. Reddy, Catal. Lett. 20, 317 (1993).

    Article  Google Scholar 

  26. C. Karunakaran, P. Gomathisankar, and G. Manikandan, Mater. Chem. Phys. 123, 585 (2010).

    Article  Google Scholar 

  27. J. Zhu, J. Yang, Z.-F. Bian, J. Ren, Y.-M. Liu, Y. Cao, H.-X. Li, H.-Y. He, and K.-N. Fan, Appl. Catal. B 76, 82 (2007).

    Article  Google Scholar 

  28. T.C. Damen, S.P.S. Proto, and B. Tell, Phys. Rev. 142, 570 (1966).

    Article  Google Scholar 

  29. M.K. Gupta and B. Kumar, J. Mater. Chem. 21, 14559 (2011).

    Article  Google Scholar 

  30. M. Palard, J. Balencie, A. Maguer, and J.F. Hochepied, Mater. Chem. Phys. 120, 79 (2010).

    Article  Google Scholar 

  31. S. Kumar, S. Mukherjee, R.K. Singh, S. Chatterjee, and A.K. Ghosh, J. Appl. Phys. 110, 103508 (2011).

    Article  Google Scholar 

  32. J.I. Panvoke, Optical Process in Semiconductors (Upper Saddle River: Prentice-Hall, 1971).

    Google Scholar 

  33. X. Li, H. Zhu, J. Wei, K. Wang, E. Xu, Z. Li, and D. Wu, Appl. Phys. A 97, 341 (2009).

    Article  Google Scholar 

  34. J. Tauc, Amorphous and Liquid Semiconductors (New York: Plenum Press, 1974).

    Book  Google Scholar 

  35. Q.J. Yu, W.Y. Fu, C.L. Yu, H.B. Yang, R.H. Wei, M.H. Li, and S.K. Liu, J. Phys. Chem. C 111, 17521 (2007).

    Article  Google Scholar 

  36. K.L. Sajjad, S. Shamaila, B. Tian, F. Chen, and J. Zhang, Appl. Catal. B 91, 397 (2009).

    Article  Google Scholar 

  37. B.H. Zeng, G.T. Duan, Y. Li, S.K. Yang, X.X. Xu, and W.P. Cai, Adv. Funct. Mater. 20, 561 (2010).

    Article  Google Scholar 

  38. W.E. Mahmoud, J. Cryst. Growth 312, 3075 (2010).

    Article  Google Scholar 

  39. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).

    Article  Google Scholar 

  40. J. Maragatha, K. Jothivenkatachalam, and S. Karuppuchamy, J. Mater. Sci.: Mater. Electron. 27, 9233 (2016).

    Google Scholar 

  41. P. Sun, L. Liu, S.-C. Cui, and J.-G. Liu, Catal. Lett. 144, 2107 (2014).

    Article  Google Scholar 

  42. K. Santhi, J. Maragatha, C. Rani, and S. Karuppuchamy, Mater. Focus 5, 1 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

Authors G. Vijayaprasath and P. Soundarrajan are grateful to the Department of Science and Technology (DST) for financial support by awarding prestigious National Post-Doctoral Fellow (PDF/2017/000348 and PDF/2017/000497) under the SERB Scheme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Vijayaprasath or G. Ravi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayaprasath, G., Soundarrajan, P. & Ravi, G. Synthesis of ZnO Nanosheets Morphology by Ce Doping for Photocatalytic Activity. J. Electron. Mater. 48, 684–695 (2019). https://doi.org/10.1007/s11664-018-6763-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6763-y

Keywords

Navigation