Skip to main content
Log in

Structural Design of Near-Infrared Light-Active Cu/TiO2/NaYF4:Yb,Er Nanocomposite Photocatalysts

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Photocatalysis under low energy light is of great importance for study of environmental pollution impact. There is an increasing demand for preparing integrated photocatalysts to show their potential in persistent organic compound degradation under visible and near-infrared light. In this work, we have reported the structural combination of three functional components of NaYF4:Yb,Er, TiO2, Cu into photocatalytic nanocomposites for near-infrared light (NIR) photocatalysis. Uniform and monodisperse NaYF4:Yb,Er nanocubes prepared by hydrothermolysis were used as a photon converter and they were combined with TiO2 semiconductor and Cu co-catalysts by sequential deposition to fabricate NIR-active photocatalysts. The Cu/TiO2/NaYF4:Yb,Er nanocomposites were investigated for the organic degradation under NIR light. The Cu/TiO2/NaYF4:Yb,Er photocatalysts were photoactive with NIR light and full decomposition of methylene blue was reached for 90 min. These nanocomposites exhibit the NIR photocatalytic response caused by the NIR light absorption and photon electron transfer over NaYF4:Yb,Er, TiO2, and Cu components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.L. Cates, S.L. Chinnapongse, J.H. Kim, and J.H. Kim, Environ. Sci. Technol. 46, 12316 (2012).

    Article  CAS  Google Scholar 

  2. E. Talaie, P. Bonnick, X. Sun, Q. Pang, X. Liang, and L.F. Nazar, Chem. Mater. 29, 90 (2017).

    Article  CAS  Google Scholar 

  3. X. Hu, G. Li, and J.C. Yu, Langmuir 26, 3031 (2010).

    Article  CAS  Google Scholar 

  4. A. Kubacka, M.F. Garcia, and G. Colon, Chem. Rev. 112, 1555 (2012).

    Article  CAS  Google Scholar 

  5. J.L. White, M.F. Baruch, J.E. Pander, Y. Hu, I.C. Fortmeyer, J.E. Park, T. Zang, K. Liao, J. Gu, Y. Yan, T.W. Shaw, E. Abelev, and A.B. Bocarsly, Chem. Rev. 115, 12888 (2015).

    Article  CAS  Google Scholar 

  6. Z. Wang, Y. Liu, B. Huang, Y. Dai, Z. Lou, G. Wang, X. Zhang, and X. Qin, Phys. Chem. Chem. Phys. 16, 2758 (2014).

    Article  CAS  Google Scholar 

  7. P.V. Kamat, J. Phys. Chem. C 111, 2834 (2007).

    Article  CAS  Google Scholar 

  8. R. Rajagopal and K.-S. Ryu, Appl. Catal. B: Environ. 236, 125 (2018).

    Article  CAS  Google Scholar 

  9. A. Aghamali, M. Khosravi, H. Hamishehkar, N. Modirshahla, and M.A. Behnajady, Mat. Sci. Semicon. Proc. 87, 142 (2018).

    Article  CAS  Google Scholar 

  10. K. Ramasamy, M.A. Malik, N. Revaprasadu, and P. O’Brien, Chem. Mater. 25, 3551 (2013).

    Article  CAS  Google Scholar 

  11. D. Raveli, D. Dondi, M. Fagnoni, and A. Albini, Chem. Soc. Rev. 38, 1999 (2009).

    Article  CAS  Google Scholar 

  12. A.S. Aleksandrovsky, I.A. Gudim, A.S. Krylov, A.V. Malakhovskii, and V.L. Temerov, J. Alloy. Compd. 496, L18 (2010).

    Article  CAS  Google Scholar 

  13. F. Schuth, Chem. Mater. 26, 423 (2014).

    Article  CAS  Google Scholar 

  14. J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, Chem. Rev. 115, 395 (2015).

    Article  CAS  Google Scholar 

  15. C.S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov, and V. Atuchin, Phys. Chem. Chem. Phys. 17, 19278 (2015).

    Article  CAS  Google Scholar 

  16. C.S. Lim, A.S. Aleksandrovsky, M.S. Molokeev, A.S. Oreshonkov, and V.V. Atuchin, J. Alloy. Compd. 713, 156 (2017).

    Article  CAS  Google Scholar 

  17. B. Zhou, B. Shi, D. Jin, and X. Liu, Nat. Nano. 10, 924 (2015).

    Article  CAS  Google Scholar 

  18. J. Wang, R. Deng, M.A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T.S.A. Hor, P. Zhang, G. Liu, Y. Han, and X. Liu, Nat. Mater. 13, 157 (2014).

    Article  CAS  Google Scholar 

  19. K. Shin, T. Jung, E. Lee, G. Lee, Y. Goh, J. Heo, M. Jung, E.J. Jo, H. Lee, M.G. Kim, and K.T. Lee, Phys. Chem. Chem. Phys. 19, 9739 (2017).

    Article  CAS  Google Scholar 

  20. H. Terraschke and C. Wickleder, Chem. Rev. 115, 11352 (2015).

    Article  CAS  Google Scholar 

  21. K. Peynshaert, B.B. Manshian, F. Joris, K. Braeckmans, S.C.D. Smedt, J. Demeester, and S.J. Soenen, Chem. Rev. 114, 7581 (2014).

    Article  CAS  Google Scholar 

  22. W. Feng, X. Zhu, and F. Li, NPG Asia Mater. 5, e75 (2013).

    Article  CAS  Google Scholar 

  23. G. Chen, H. Qiu, P.N. Prasad, and X. Chen, Chem. Rev. 114, 5161 (2014).

    Article  CAS  Google Scholar 

  24. W.Y. Teoh, J.A. Scott, and R. Amal, J. Phys. Chem. Lett. 3, 629 (2012).

    Article  CAS  Google Scholar 

  25. T.D. Nguyen, C.T. Dinh, and T.O. Do, Chem. Commun. 51, 624 (2015).

    Article  Google Scholar 

  26. A.K. Guria and N. Pradhan, Chem. Mater. 28, 5224 (2016).

    Article  CAS  Google Scholar 

  27. Y. Tang, W. Di, X. Zhai, R. Yang, and W. Qin, ACS Catal. 3, 405 (2013).

    Article  CAS  Google Scholar 

  28. X. Guo, C. Chen, D. Zhang, C.P. Tripp, S. Yin, and W. Qin, RSC Adv. 6, 8127 (2016).

    Article  CAS  Google Scholar 

  29. N. Prakash, D. Thangaraju, R. Karthikeyan, M. Arivanandhan, Y. Shimura, and Y. Hayakawa, RSC Adv. 6, 80655 (2016).

    Article  CAS  Google Scholar 

  30. K. Binnemans, Chem. Rev. 109, 4283 (2009).

    Article  CAS  Google Scholar 

  31. K. Wenderich and G. Mul, Chem. Rev. 116, 14587 (2016).

    Article  CAS  Google Scholar 

  32. Z. Deutsch, L. Neeman, and D. Oron, Nat. Nanotechnol. 8, 649 (2013).

    Article  CAS  Google Scholar 

  33. H. Li, Y. Wang, H. Li, Y. Zhang, and J. Yang, Sci. Rep. 6, 35941 (2016).

    Article  CAS  Google Scholar 

  34. C. Yan, A. Dadvand, F. Rosei, and D.F. Perepichka, J. Am. Chem. Soc. 132, 8868 (2010).

    Article  CAS  Google Scholar 

  35. A. Fujishima and K. Honda, Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  36. H. Zhang and J.F. Banfield, Chem. Rev. 114, 9613 (2014).

    Article  CAS  Google Scholar 

  37. G. Liu, L. Wang, H.G. Yang, H.M. Cheng, and G.Q. Lu, J. Mater. Chem. 20, 831 (2010).

    Article  Google Scholar 

  38. M. Gao, L. Zhu, W.L. Ong, J. Wang, and G.W. Ho, Catal. Sci. Technol. 5, 4703 (2015).

    Article  CAS  Google Scholar 

  39. C. Luo, X. Ren, Z. Dai, Y. Zhang, X. Qi, and C. Pan, ACS Appl. Mater. Interfaces 9, 23265 (2017).

    Article  CAS  Google Scholar 

  40. Z. Zhang and J.T. Yates, Chem. Rev. 112, 5520 (2012).

    Article  CAS  Google Scholar 

  41. Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, and C. Li, Chem. Rev. 114, 9987 (2014).

    Article  CAS  Google Scholar 

  42. N. Hildebrandt, C.M. Spillmann, W.R. Algar, T. Pons, M.H. Stewart, K. Susumu, S.A. Diaz, J.B. Delehanty, and I.L. Medintz, Chem. Rev. 117, 536 (2017).

    Article  CAS  Google Scholar 

  43. G. Liu, J.C. Yu, G.Q. Lu, and H.M. Cheng, Chem. Commun. 47, 6763 (2011).

    Article  CAS  Google Scholar 

  44. F. Wang, Y. Han, C.S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, Nature 463, 1061 (2010).

    Article  CAS  Google Scholar 

  45. R.B. Anderson, S.J. Smith, P.S. May, and M.T. Berry, J. Phys. Chem. Lett. 5, 36 (2014).

    Article  CAS  Google Scholar 

  46. D.K. Ma, S.M. Huang, Y.Y. Yu, Y.F. Xu, and Y.Q. Dong, J. Phys. Chem. C 113, 8136 (2009).

    Article  CAS  Google Scholar 

  47. X. Wang, J. Zhuang, Q. Peng, and Y. Li, Nature 437, 121 (2005).

    Article  CAS  Google Scholar 

  48. M.T. Berry and P.S. May, J. Phys. Chem. A 119, 9805 (2015).

    Article  CAS  Google Scholar 

  49. R. Asahi, T. Morikawa, H. Irie, and T. Ohwaki, Chem. Rev. 114, 9824 (2014).

    Article  CAS  Google Scholar 

  50. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D.W. Bahnemann, Chem. Rev. 114, 9919 (2014).

    Article  CAS  Google Scholar 

  51. S. Rasalingam, H.S. Kibombo, C.-M. Wu, R. Peng, J. Baltrusaitis, and R.T. Koodali, Appl. Catal. B: Environ. 148–149, 394 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 104.06-2017.311. HVD thanks to financial support from the Hue University Foundation Programme (DHH 2016-02-83).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Duc Cuong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Hau, D., Nhan, D.T.T., Van Duc, N. et al. Structural Design of Near-Infrared Light-Active Cu/TiO2/NaYF4:Yb,Er Nanocomposite Photocatalysts. J. Electron. Mater. 48, 329–336 (2019). https://doi.org/10.1007/s11664-018-6717-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6717-4

Keywords

Navigation