Journal of Electronic Materials

, Volume 48, Issue 1, pp 321–328 | Cite as

Spin-Polarized Transport Behavior Induced by Asymmetric Edge Hydrogenation in Hybridized Zigzag Boron Nitride and Graphene Nanoribbons

  • Lihua Wang
  • Bingjun Ding
  • Yong GuoEmail author


We fused zigzag graphene to boron nitride nanoribbons by gradually doping C atoms at only one edge of the ribbons to design a hybridized ZBxNyCz (x + y + z = 12) structure. To create asymmetric edge hydrogenation, the ZBxNyCz ribbons were monohydrogenated (N–H) at one edge and dihydrogenated (C–H2) at the opposite edge, and the structure was subsequently labeled as H-ZBxNyCz-H2. On the basis of density functional theory and non-equilibrium Green’s function, our simulation revealed that H-ZBxNyCz-H2-based devices present a variety of abnormal spin-polarized transport properties. When the value of x and y in the H-ZBxNyCz-H2 structure is not equal (i.e., z is an odd number), the spin-polarized currents are restricted, regardless of their ferromagnetic (FM) or anti-ferromagnetic (AFM) state. When x is equal to y (i.e., z is an even number), the H-ZBxNyCz-H2 structure exhibits negative differential resistance and spin-filtering features in the FM state. Conversely, in the AFM state, the spin-polarized currents of the structure exhibit an exceptional oscillation effect with spin polarization as high as 100% at certain bias voltages. By adjusting the width of graphene and the spin states, the resulting hybridized H-ZBxNyCz-H2 structure can be potentially applied to the fabrication of spin nanodevices with exotic functionalities.


Hybridization nanoribbons negative differential resistance spin-filtering oscillation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge the financial supported by the National Natural Science Foundation of China (Grant No. 21503122), Natural Science Foundation of Shanxi Province of China (Grant No. 201701D121002) and Datong City Key Project of Research and Development of Industry of China (Grant No. 2018021).


  1. 1.
    J.C. Barnes and C.A. Mirkin, Proc. Natl. Acad. Sci. USA 114, 620 (2017).CrossRefGoogle Scholar
  2. 2.
    Z.Q. Fan, W.Y. Sun, X.W. Jiang, Z.H. Zhang, X.Q. Deng, G.P. Tang, H.Q. Xie, and M.Q. Long, Carbon 113, 18 (2017).CrossRefGoogle Scholar
  3. 3.
    R. Hu, Z.Q. Fan, C.H. Fu, L.Y. Nie, W.R. Huang, and Z.H. Zhang, Carbon 126, 93 (2018).CrossRefGoogle Scholar
  4. 4.
    Y.S. Liu, Y.J. Dong, J. Zhang, H.L. Yu, J.F. Feng, and X.F. Yang, Nanotechnology 29, 125201 (2018).CrossRefGoogle Scholar
  5. 5.
    X.F. Yang, Z.G. Shao, H.L. Yu, Y.J. Dong, Y.W. Kuang, and Y.S. Liu, Org. Electron. 55, 170 (2018).CrossRefGoogle Scholar
  6. 6.
    Y. Song, Y. Su, P. Zhao, G.P. Zhang, C.K. Wang, and G. Chen, Org. Electron. 59, 113 (2018).CrossRefGoogle Scholar
  7. 7.
    C.V. Dyck and M.A. Ratner, Nano Lett. 15, 1577 (2015).CrossRefGoogle Scholar
  8. 8.
    Z.Q. Fan, Z.H. Zhang, X.Q. Deng, G.P. Tang, C.H. Yang, L. Sun, and H.L. Zhu, Carbon 98, 179 (2016).CrossRefGoogle Scholar
  9. 9.
    A.C. Whalley, M.L. Steigerwald, X.F. Guo, and C. Nuckolls, J. Am. Chem. Soc. 129, 12590 (2007).CrossRefGoogle Scholar
  10. 10.
    H. Böckmann, S. Liu, J. Mielke, S. Gawinkowski, J. Waluk, L. Grill, M. Wolf, and T. Kumagai, Nano Lett. 16, 1034 (2016).CrossRefGoogle Scholar
  11. 11.
    S.J. Liu, N.J. Huo, S. Gan, Y. Li, Z.M. Wei, B.J. Huang, J. Liu, J.B. Li, and H.D. Chen, J. Mater. Chem. C 3, 10974 (2015).CrossRefGoogle Scholar
  12. 12.
    B. Capozzi, J. Xia, O. Adak, E.J. Dell, Z.F. Liu, J.C. Taylor, J.B. Neaton, L.M. Campos, and L. Venkataraman, Nat. Nanotechnol. 10, 522 (2015).CrossRefGoogle Scholar
  13. 13.
    I. Maity, K. Ghosh, H. Rahaman, and P. Bhattacharyya, J. Mater. Sci.: Mater. Electron. 28, 9039 (2017).Google Scholar
  14. 14.
    D. Dass, Superlattice. Microstruct. 115, 88 (2018).CrossRefGoogle Scholar
  15. 15.
    Z.Q. Fan, F. Xie, X.W. Jiang, Z.M. Wei, and S.S. Li, Carbon 110, 200 (2016).CrossRefGoogle Scholar
  16. 16.
    X.Q. Deng, Z.H. Zhang, G.P. Tang, Z.Q. Fan, and C.H. Yang, Carbon 66, 646 (2014).CrossRefGoogle Scholar
  17. 17.
    T. Wassmann, A.P. Seisonen, A.M. Saitta, M. Lazzeri, and F. Mauri, Phys. Rev. Lett. 101, 096402 (2008).CrossRefGoogle Scholar
  18. 18.
    T. Levente, D. Gergely, L. Philippe, and P.B. Laszlo, Nat. Nanotechnol. 3, 397 (2008).CrossRefGoogle Scholar
  19. 19.
    B. Xu, J. Yin, Y.D. Xia, X.G. Wan, K. Jiang, and Z.G. Liu, Appl. Phys. Lett. 96, 163102 (2010).CrossRefGoogle Scholar
  20. 20.
    S.M.M. Dubois, X. Decerck, J.C. Charlier, and M.C. Payne, ACS Nano 7, 4578 (2013).CrossRefGoogle Scholar
  21. 21.
    J. Liu, Z.H. Zhang, P.F. Yuan, and Z.Q. Fan, Phys. Chem. Chem. Phys. 19, 4469 (2017).CrossRefGoogle Scholar
  22. 22.
    W. Kuang, X.X. Ai, Z.Q. Fan, and Z.H. Zhang, Org. Electron. 44, 210 (2017).CrossRefGoogle Scholar
  23. 23.
    H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando, and D. Golberg, Mano Lett. 10, 5049 (2010).Google Scholar
  24. 24.
    Z. Liu, L.L. Ma, G. Shi, W. Zhou, Y.J. Gong, S.D. Lei, X.B. Yang, J.N. Zhang, J.J. Yu, K.P. Hackenberg, A. Babakhani, J.C. Idrobo, R. Vajtai, J. Lou, and P.M. Ajayan, Nat. Nanotechnol. 8, 119 (2013).CrossRefGoogle Scholar
  25. 25.
    Y.B. Gao, Y.F. Zhang, P.C. Chen, Y.C. Li, M.X. Liu, T. Gao, D.L. Ma, Y.B. Chen, Z.H. Cheng, X.H. Qiu, W.H. Duan, and Z.F. Liu, Nano Lett. 13, 3439 (2013).CrossRefGoogle Scholar
  26. 26.
    W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M.F. Crommie, and A. Zettl, Appl. Phys. Lett. 98, 242105 (2011).CrossRefGoogle Scholar
  27. 27.
    Y.H. Zhou, J.B. Zhang, C. Ye, X.S. Miao, and D.L. Zhang, J. Appl. Phys. 115, 114313 (2014).CrossRefGoogle Scholar
  28. 28.
    J. He, K.Q. Chen, Z.Q. Fan, L.M. Tang, and W.P. Hu, Appl. Phys. Lett. 97, 193305 (2010).CrossRefGoogle Scholar
  29. 29.
    S.Z. Zhu and T. Li, Phys. Rev. B 93, 115401 (2016).CrossRefGoogle Scholar
  30. 30.
    J. Ouynag, M.Q. Long, X.J. Zhang, D. Zhang, J. He, and Y.L. Gao, AIP Adv. 6, 035116 (2016).CrossRefGoogle Scholar
  31. 31.
    J. Peng, Y.H. Zhou, and K.Q. Chen, Org. Electron. 27, 137 (2015).CrossRefGoogle Scholar
  32. 32.
    Y.P. An, M.J. Zhang, D.P. Wu, T.X. Wang, Z.Y. Jiao, C.X. Xia, Z.M. Fu, and K. Wang, Phys. Chem. Chem. Phys. 18, 27976 (2016).CrossRefGoogle Scholar
  33. 33.
    M. Wang, X.T. Li, Y. Li, X. Zuo, D.M. Li, B. Cui, and D.S. Liu, Org. Electron. 58, 63 (2018).CrossRefGoogle Scholar
  34. 34.
    X.H. Zheng, X.L. Wang, L.F. Huang, H. Hao, J. Lan, and Z. Zeng, Phys. Rev. B 86, 081408 (R) (2012).CrossRefGoogle Scholar
  35. 35.
    D.Q. Fang, S.L. Zhang, and H. Xu, RSC Adv. 3, 24075 (2013).CrossRefGoogle Scholar
  36. 36.
    Y. Ding and Y. Wang, Appl. Phys. Lett. 101, 013102 (2012).CrossRefGoogle Scholar
  37. 37.
    M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).CrossRefGoogle Scholar
  38. 38.
    D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).CrossRefGoogle Scholar
  39. 39.
    N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993 (1991).CrossRefGoogle Scholar
  40. 40.
    M. Buttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985).CrossRefGoogle Scholar
  41. 41.
    Y.P. An, M.J. Zhang, L.P. Chen, C.X. Xia, T.X. Wang, Z.M. Fu, Z.Y. Jiao, and G.L. Xu, RSC Adv. 5, 107136 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Physics and Electronic ScienceShanxi Datong UniversityDatongChina
  2. 2.State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anChina

Personalised recommendations