Skip to main content

Enhancing the Thermoelectric Performance of Self-Defect TiNiSn: A First-Principles Calculation

Abstract

Carrier concentration is an important parameter for improving the thermoelectric (TE) properties of half-Heusler alloys, which can be achieved by defect engineering. In the present work, we studied the electronic structure and TE properties of TiNiSn with self-defects by using first-principles calculation. The self-defects include vacancies, substitutions, and interstitials, and all these systems were studied on the basis of defect formation energy. The stability of defect configurations showed that the Ni-vacancy (Ni-vac), Ti substitution at a Ni site (TiNi), Sn substitution at Ti and Ni sites (SnTi, SnNi), Ti-interstitial (Ti-int), and Ni-interstitial (Ni-int) are the most favorable defects. The self-defects were found to create an electron pocket in the density of states at the Fermi energy (DOS(EF)), except for the Ni-vac. Further, the electron concentration and specific heat were significantly increased by the self-defects. Ni-vac, TiNi, and SnNi showed a large power factor in comparison to pristine TiNiSn due to the high electrical conductivity. Ni-vac and SnNi showed a high TE performance in the intermediate and high temperature range, which would make them excellent TE candidates for a variety of applications.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, and T. Zhu, Nat. Commun. 6, 8144 (2015).

    Article  Google Scholar 

  2. 2.

    Z. Li, C. Xiao, H. Zhu, and Y. Xie, J. Am. Chem. Soc. 138, 14810 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    C.N. Savory, A.M. Ganose, and D.O. Scanlon, Chem. Mater. 29, 5156 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    G.Y. Yonggang, X. Zhang, and A. Zunger, Phys. Rev. B 95, 085201 (2017).

    Article  Google Scholar 

  5. 5.

    D.K. Aswal, R. Basu, and A. Singh, Energy Convers. Manag. 114, 50 (2016).

    Article  Google Scholar 

  6. 6.

    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    O. Eibl, K. Nielsch, N. Peranio, and F. Völklein, Thermoelectric Bi 2 Te 3 Nanomaterials (New York: Wiley, 2015).

    Google Scholar 

  8. 8.

    H. Muta, T. Kanemitsu, K. Kurosaki, and S. Yamanaka, J. Alloys Compd. 469, 50 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    S. Sakurada and N. Shutoh, Appl. Phys. Lett. 86, 082105 (2005).

    Article  Google Scholar 

  10. 10.

    G. Rogl, P. Sauerschnig, Z. Rykavets, V. Romaka, P. Heinrich, B. Hinterleitner, A. Grytsiv, E. Bauer, and P. Rogl, Acta Mater. 131, 336 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    H. Hazama, R. Asahi, M. Matsubara, and T. Takeuchi, J. Electron. Mater. 39, 1549 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    H. Hazama, M. Matsubara, R. Asahi, and T. Takeuchi, J. Appl. Phys. 110, 063710 (2011).

    Article  Google Scholar 

  13. 13.

    K. Kirievsky, Y. Gelbstein, and D. Fuks, J. Solid State Chem. 203, 247 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    J.E. Douglas, P.A. Chater, C.M. Brown, T.M. Pollock, and R. Seshadri, J. Appl. Phys. 116, 163514 (2014).

    Article  Google Scholar 

  15. 15.

    M. Wambach, R. Stern, S. Bhattacharya, P. Ziolkowski, E. Müller, G.K. Madsen, and A. Ludwig, Adv. Electron. Mater. 2, 1500208 (2016).

    Article  Google Scholar 

  16. 16.

    C.G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004).

    Article  Google Scholar 

  17. 17.

    R.L. González-Romero and J.J. Meléndez, J. Alloys Compd. 732, 536 (2018).

    Article  Google Scholar 

  18. 18.

    C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C.G. Van de Walle, Rev. Mod. Phys. 86, 253 (2014).

    Article  Google Scholar 

  19. 19.

    A.D. McNaught and A.D. McNaught, Compendium of Chemical Terminology (Oxford: Blackwell, 1997).

    Google Scholar 

  20. 20.

    J. Buckeridge, D. Scanlon, A. Walsh, and C.R.A. Catlow, Comput. Phys. Commun. 185, 330 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    J.E. Douglas, C.S. Birkel, N. Verma, V.M. Miller, M.-S. Miao, G.D. Stucky, T.M. Pollock, and R. Seshadri, J. Appl. Phys. 115, 043720 (2014).

    Article  Google Scholar 

  22. 22.

    V. Romaka, P. Rogl, L. Romaka, Y. Stadnyk, N. Melnychenko, A. Grytsiv, M. Falmbigl, and N. Skryabina, J. Solid State Chem. 197, 103 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, and G. Ceder, APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  24. 24.

    G.K. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    CAS  Article  Google Scholar 

  25. 25.

    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  26. 26.

    W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  27. 27.

    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, and I. Dabo, J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  28. 28.

    P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, and M. Cococcioni, J. Phys. Condens. Matter 29, 465901 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    T. Björkman, Comput. Phys. Commun. 182, 1183 (2011).

    Article  Google Scholar 

  30. 30.

    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Article  Google Scholar 

  31. 31.

    A.M. Rappe, K.M. Rabe, E. Kaxiras, and J. Joannopoulos, Phys. Rev. B 41, 1227 (1990).

    CAS  Article  Google Scholar 

  32. 32.

    C. Wang, S. Chen, J.-H. Yang, L. Lang, H.-J. Xiang, X.-G. Gong, A. Walsh, and S.-H. Wei, Chem. Mater. 26, 3411 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    L. Wang, L. Miao, Z. Wang, W. Wei, R. Xiong, H. Liu, J. Shi, and X. Tang, J. Appl. Phys. 105, 013709 (2009).

    Article  Google Scholar 

  34. 34.

    K.P. Ong, D.J. Singh, and P. Wu, Phys. Rev. B 83, 115110 (2011).

    Article  Google Scholar 

  35. 35.

    M. Rittiruam, T. Seetawan, S. Yokhasing, K. Matarat, P. Bach Thang, M. Kumar, and J.G. Han, Inorg. Chem. 55, 8822 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    M. Rittiruam, A. Vora-Ud, W. Impho, and T. Seetawan, Integr. Ferroelectr. 165, 61 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Thailand Research Fund (TRF) through the Royal Golden Jubilee (RGJ) Ph.D. Program (Grant No.PHD/0195/2558). We would like to thank Asst. Prof. Dr. Pornjuk Srepusharawoot, Department of Physics, Faculty of Science, Khon Kaen University, Thailand, for supporting the MSNcluster computational and with the financial support of the Thailand Research Fund: RSA6180070.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tosawat Seetawan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rittiruam, M., Yangthaisong, A. & Seetawan, T. Enhancing the Thermoelectric Performance of Self-Defect TiNiSn: A First-Principles Calculation. Journal of Elec Materi 47, 7456–7462 (2018). https://doi.org/10.1007/s11664-018-6686-7

Download citation

Keywords

  • Half-Heusler alloys
  • defect engineering
  • thermoelectric materials
  • thermoelectric properties