Advertisement

Journal of Electronic Materials

, Volume 47, Issue 12, pp 7456–7462 | Cite as

Enhancing the Thermoelectric Performance of Self-Defect TiNiSn: A First-Principles Calculation

  • Meena Rittiruam
  • Anucha Yangthaisong
  • Tosawat SeetawanEmail author
Article
  • 103 Downloads

Abstract

Carrier concentration is an important parameter for improving the thermoelectric (TE) properties of half-Heusler alloys, which can be achieved by defect engineering. In the present work, we studied the electronic structure and TE properties of TiNiSn with self-defects by using first-principles calculation. The self-defects include vacancies, substitutions, and interstitials, and all these systems were studied on the basis of defect formation energy. The stability of defect configurations showed that the Ni-vacancy (Ni-vac), Ti substitution at a Ni site (TiNi), Sn substitution at Ti and Ni sites (SnTi, SnNi), Ti-interstitial (Ti-int), and Ni-interstitial (Ni-int) are the most favorable defects. The self-defects were found to create an electron pocket in the density of states at the Fermi energy (DOS(EF)), except for the Ni-vac. Further, the electron concentration and specific heat were significantly increased by the self-defects. Ni-vac, TiNi, and SnNi showed a large power factor in comparison to pristine TiNiSn due to the high electrical conductivity. Ni-vac and SnNi showed a high TE performance in the intermediate and high temperature range, which would make them excellent TE candidates for a variety of applications.

Keywords

Half-Heusler alloys defect engineering thermoelectric materials thermoelectric properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the Thailand Research Fund (TRF) through the Royal Golden Jubilee (RGJ) Ph.D. Program (Grant No.PHD/0195/2558). We would like to thank Asst. Prof. Dr. Pornjuk Srepusharawoot, Department of Physics, Faculty of Science, Khon Kaen University, Thailand, for supporting the MSNcluster computational and with the financial support of the Thailand Research Fund: RSA6180070.

References

  1. 1.
    C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, and T. Zhu, Nat. Commun. 6, 8144 (2015).CrossRefGoogle Scholar
  2. 2.
    Z. Li, C. Xiao, H. Zhu, and Y. Xie, J. Am. Chem. Soc. 138, 14810 (2016).CrossRefGoogle Scholar
  3. 3.
    C.N. Savory, A.M. Ganose, and D.O. Scanlon, Chem. Mater. 29, 5156 (2017).CrossRefGoogle Scholar
  4. 4.
    G.Y. Yonggang, X. Zhang, and A. Zunger, Phys. Rev. B 95, 085201 (2017).CrossRefGoogle Scholar
  5. 5.
    D.K. Aswal, R. Basu, and A. Singh, Energy Convers. Manag. 114, 50 (2016).CrossRefGoogle Scholar
  6. 6.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  7. 7.
    O. Eibl, K. Nielsch, N. Peranio, and F. Völklein, Thermoelectric Bi 2 Te 3 Nanomaterials (New York: Wiley, 2015).Google Scholar
  8. 8.
    H. Muta, T. Kanemitsu, K. Kurosaki, and S. Yamanaka, J. Alloys Compd. 469, 50 (2009).CrossRefGoogle Scholar
  9. 9.
    S. Sakurada and N. Shutoh, Appl. Phys. Lett. 86, 082105 (2005).CrossRefGoogle Scholar
  10. 10.
    G. Rogl, P. Sauerschnig, Z. Rykavets, V. Romaka, P. Heinrich, B. Hinterleitner, A. Grytsiv, E. Bauer, and P. Rogl, Acta Mater. 131, 336 (2017).CrossRefGoogle Scholar
  11. 11.
    H. Hazama, R. Asahi, M. Matsubara, and T. Takeuchi, J. Electron. Mater. 39, 1549 (2010).CrossRefGoogle Scholar
  12. 12.
    H. Hazama, M. Matsubara, R. Asahi, and T. Takeuchi, J. Appl. Phys. 110, 063710 (2011).CrossRefGoogle Scholar
  13. 13.
    K. Kirievsky, Y. Gelbstein, and D. Fuks, J. Solid State Chem. 203, 247 (2013).CrossRefGoogle Scholar
  14. 14.
    J.E. Douglas, P.A. Chater, C.M. Brown, T.M. Pollock, and R. Seshadri, J. Appl. Phys. 116, 163514 (2014).CrossRefGoogle Scholar
  15. 15.
    M. Wambach, R. Stern, S. Bhattacharya, P. Ziolkowski, E. Müller, G.K. Madsen, and A. Ludwig, Adv. Electron. Mater. 2, 1500208 (2016).CrossRefGoogle Scholar
  16. 16.
    C.G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004).CrossRefGoogle Scholar
  17. 17.
    R.L. González-Romero and J.J. Meléndez, J. Alloys Compd. 732, 536 (2018).CrossRefGoogle Scholar
  18. 18.
    C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C.G. Van de Walle, Rev. Mod. Phys. 86, 253 (2014).CrossRefGoogle Scholar
  19. 19.
    A.D. McNaught and A.D. McNaught, Compendium of Chemical Terminology (Oxford: Blackwell, 1997).Google Scholar
  20. 20.
    J. Buckeridge, D. Scanlon, A. Walsh, and C.R.A. Catlow, Comput. Phys. Commun. 185, 330 (2014).CrossRefGoogle Scholar
  21. 21.
    J.E. Douglas, C.S. Birkel, N. Verma, V.M. Miller, M.-S. Miao, G.D. Stucky, T.M. Pollock, and R. Seshadri, J. Appl. Phys. 115, 043720 (2014).CrossRefGoogle Scholar
  22. 22.
    V. Romaka, P. Rogl, L. Romaka, Y. Stadnyk, N. Melnychenko, A. Grytsiv, M. Falmbigl, and N. Skryabina, J. Solid State Chem. 197, 103 (2013).CrossRefGoogle Scholar
  23. 23.
    A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, and G. Ceder, APL Mater. 1, 011002 (2013).CrossRefGoogle Scholar
  24. 24.
    G.K. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).CrossRefGoogle Scholar
  25. 25.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
  26. 26.
    W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
  27. 27.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, and I. Dabo, J. Phys. Condens. Matter 21, 395502 (2009).CrossRefGoogle Scholar
  28. 28.
    P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, and M. Cococcioni, J. Phys. Condens. Matter 29, 465901 (2017).CrossRefGoogle Scholar
  29. 29.
    T. Björkman, Comput. Phys. Commun. 182, 1183 (2011).CrossRefGoogle Scholar
  30. 30.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  31. 31.
    A.M. Rappe, K.M. Rabe, E. Kaxiras, and J. Joannopoulos, Phys. Rev. B 41, 1227 (1990).CrossRefGoogle Scholar
  32. 32.
    C. Wang, S. Chen, J.-H. Yang, L. Lang, H.-J. Xiang, X.-G. Gong, A. Walsh, and S.-H. Wei, Chem. Mater. 26, 3411 (2014).CrossRefGoogle Scholar
  33. 33.
    L. Wang, L. Miao, Z. Wang, W. Wei, R. Xiong, H. Liu, J. Shi, and X. Tang, J. Appl. Phys. 105, 013709 (2009).CrossRefGoogle Scholar
  34. 34.
    K.P. Ong, D.J. Singh, and P. Wu, Phys. Rev. B 83, 115110 (2011).CrossRefGoogle Scholar
  35. 35.
    M. Rittiruam, T. Seetawan, S. Yokhasing, K. Matarat, P. Bach Thang, M. Kumar, and J.G. Han, Inorg. Chem. 55, 8822 (2016).CrossRefGoogle Scholar
  36. 36.
    M. Rittiruam, A. Vora-Ud, W. Impho, and T. Seetawan, Integr. Ferroelectr. 165, 61 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Meena Rittiruam
    • 1
    • 2
  • Anucha Yangthaisong
    • 3
  • Tosawat Seetawan
    • 1
    • 2
    Email author
  1. 1.Program of Physics, Faculty of Science and TechnologySakon Nakhon Rajabhat UniversitySakon NakhonThailand
  2. 2.Simulation Research Laboratory, Center of Excellence on Alternative Energy, Research and Development InstituteSakon Nakhon Rajabhat UniversitySakon NakhonThailand
  3. 3.Department of Physics, Faculty of ScienceUbon Ratchathani UniversityUbon RatchathaniThailand

Personalised recommendations