Skip to main content
Log in

Study of Fusion Thickness of Tin Solder Heating by Self-Propagating Exothermic Reaction

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Heat released from aluminum-nickel (Al/Ni) self-propagating exothermic reaction has been developed as a rapid heating source and is called a localized heating source due to its short duration and narrow heat affected zone (HAZ). It is suitable for the interconnection of thermal mismatch material couples, temperature-sensitive devices, microbial systems and microanalysis systems. However, the fusion thickness of the solder layer has not been deeply studied to minimize the HAZ. In this study, Sn was electroplated on the AlNi nanofoil. Experimental and numerical methods were used to evaluate the heating capability of AlNi nanofoil through analyzing the size of fusion zone and HAZ within the Sn solder–AlNi nanofoil–Sn solder sandwich structure. Finite element analysis (FEA) was used for simulating the temperature field and temperature history of the structure. Different thicknesses of tin layer were considered to analyze the effect of the change of structures. The temperature of the surface of the tin layer and fusion zone was measured to validate the FEA model. Furthermore, the analysis showed that the maximum thickness for melting the Sn layer within the substrate–Sn solder–Al/Ni nanofoil–Sn solder–substrate sandwich structure changes with the thickness of substrates and preheating temperature. FEA predictions indicated that a preheating temperature of 125°C is effective to bond Cu substrates at the thickness of 0.3 mm with tin solder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Duckham, S. Spey, J. Wang, M.E. Reiss, T.P. Weihs, E. Besnoin, and O.M. Knio, J. Appl. Phys. 96, 2336 (2004).

    Article  CAS  Google Scholar 

  2. J. Wang, E. Besnoin, A. Duckham, S.J. Spey, M.E. Reiss, and O.M. Knio, J. Appl. Phys. 95, 248 (2004).

    Article  CAS  Google Scholar 

  3. A.S. Rogachev, S.G. Vadchenko, F. Baras, O. Politano, S. Rouvimov, N.V. Sachkova, M.D. Grapes, T.P. Weihs, and A.S. Mukasyan, Combust. Flame 166, 158 (2016).

    Article  CAS  Google Scholar 

  4. J. Braeuer, J. Besser, M. Wiemer, and T. Gessner, in Solid-State Sensors, Actuators and Microsystems Conference (2011), pp. 1332–1335.

  5. J. Zhang, F.S. Wu, J. Zou, and B. An, in International Conference on Electronic Packaging Technology (2009), pp. 838–842.

  6. R. Grieseler, T. Welker, J. Müller, and P. Schaaf, Phys. Status Solidi A 209, 512 (2012).

    Article  CAS  Google Scholar 

  7. B. Boettge, J. Braeuer, M. Wiemer, M. Petzold, J. Bagdahn, and T. Gessner, J. Micromech. Microeng. 20, 064018 (2010).

    Article  Google Scholar 

  8. G.D. Theodossiadis and M.F. Zaeh, Prod. Eng. Res. Devel. 11, 401 (2017).

    Article  Google Scholar 

  9. J. Fan, T. Shi, X. Tao, T. Zhou, J. Li, Z. Tang, G. Liao, and X. Yu, J. Alloys Compd. 735, 1189 (2018).

  10. X. Qiu and J. Wang, Sens. Actuators A 141, 476 (2008).

    Article  CAS  Google Scholar 

  11. T. Namazu and S. Inoue, Mater. Sci. Forum 638, 2142 (2010).

    Article  Google Scholar 

  12. H.R. Ma, Y.P. Wang, J. Chen, H.T. Ma, and N. Zhao, in International Conference on Electronic Packaging Technology (2017), pp. 1402–1405.

  13. F. Sun, Y. Zhu, and X. Li, J. Electron. Mater. 46, 1 (2017).

    Article  Google Scholar 

  14. L. Sun, L. Zhang, S.J. Zhong, J. Ma, and L. Bao, J. Mater. Sci. Mater. Electron. 26, 9164 (2015).

    Article  CAS  Google Scholar 

  15. W. Zhu, F.S. Wu, B. Wang, E. Hou, P. Wang, C. Liu, and W.S. Xia, Microelectron. Eng. 128, 24 (2014).

    Article  CAS  Google Scholar 

  16. A.J. Gavens, D. Van Heerden, A.B. Mann, M.E. Reiss, and T.P. Weihs, J. Appl. Phys. 87, 1255 (2000).

    Article  CAS  Google Scholar 

  17. R. Pretorius, A.M. Vredenberg, F.W. Saris, and R. De, Reus. J. Appl. Phys. 70, 3636 (1991).

    Article  CAS  Google Scholar 

  18. Y. Wang, Z.K. Liu, and L.Q. Chen, Acta Mater. 52, 2665 (2004).

    Article  CAS  Google Scholar 

  19. G.D. Theodossiadis, and M.F. Zaeh, Prod. Eng. Res. Devel. 11, 373 (2017).

    Article  Google Scholar 

  20. R.C. Armstrong and M.L. Koszykowski, Combust. Flame 72, 13 (1988).

    Article  CAS  Google Scholar 

  21. D.A. Frank-Kamenetskiĭ, Diffusion and Heat Transfer in Chemical Kinetics (New York: Plenum Press, 1969).

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by the National Nature Science Foundation of China (NSFC No. 61574068), the Fundamental Research Funds for the Central Universities (No. 2016JCTD112) and the Research Grants Council (RGC) Joint Research project (RGC NO. CityU101/12). In addition, the authors thank Huazhong University of Science and Technology Analytical and Testing Center, State Key Laboratory of Material Processing and Die & Mould Technology for SEM analyze.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengshun Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Mo, L., Liu, H. et al. Study of Fusion Thickness of Tin Solder Heating by Self-Propagating Exothermic Reaction. J. Electron. Mater. 47, 7435–7448 (2018). https://doi.org/10.1007/s11664-018-6684-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6684-9

Keywords

Navigation