Skip to main content

Advertisement

Log in

Crystallization Mechanisms and Energy-Storage Performances in BaO-SrO-Na2O-Nb2O5 Based Glass–Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The [x BaO, (1 − x) SrO]-Na2O (x = 0.0, 0.2, 0.5, 0.8) niobate-based glass–ceramics were prepared through the controlled crystallization method. Crystallization mechanism, phase structure, dielectric properties, and energy-storage properties were studied by adjusting Ba/Sr ratio. It was found that the surface and internal crystallization occurred simultaneously at first crystallization peak, while surface crystallization occurred at second crystallization peak. With Ba/Sr ratio increasing, dielectric constant increased firstly and then decreased, while dielectric loss firstly decreased and then increased. When x = 0.2, optimal dielectric constant of 88 and dielectric loss of 0.0055 were obtained, which is related to the solid solution phase Sr0.5Ba0.5Nb2O6. Breakdown strength (BDS) showed a behavior of increase before decrease. The highest BDS reaches 1975 kV/cm for x = 0.2, which is attributed to uniform and dense microstructure. Correspondingly, the theoretical energy-storage density was increased up to 15.4 J/cm3. Also, discharged efficiency reaches a high value of 91%. Discharged power density of 0.65 MV/cm3 was obtained for x = 0.2 in the RLC pulsed circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.L. Pan, Y.S. Hu, and L.Q. Chen, Energy Environ. Sci. 6, 2338 (2013).

    Article  CAS  Google Scholar 

  2. P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H.H.J. Ploehn, and H.C. Zur Loye, Materials 2, 1697 (2009).

    Article  CAS  Google Scholar 

  3. K.S. Buchanan, B.X. Zhu, A. Meldru, and M.R. Freeman, Nano Lett. 5, 383 (2005).

    Article  CAS  Google Scholar 

  4. Y. Cao, P.C. Irwin, and K. Younsi, IEEE Trans. Dielectr. Electr. Insul. 11, 797 (2004).

    Article  Google Scholar 

  5. M.F. El-Kady, V. Strong, S. Dubin, and R.B. Kaner, Science 335, 1326 (2012).

    Article  CAS  Google Scholar 

  6. Z.S. Wu, K. Parves, X.L. Feng, and K. Müllen, Nat. Commun. 4, 2487 (2013).

    Article  Google Scholar 

  7. J.H. Pikul, H.G. Zhang, J. Cho, P.V. Braun, and W.P. King, Nat. Commun. 4, 1732 (2013).

    Article  Google Scholar 

  8. C.W. Cui, Y.P. Pu, Z.Y. Gao, J. Wan, Y.S. Guo, C.Y. Hui, Y.R. Wang, and Y.F. Cui, Struct. J. Alloys Compd. 711, 319 (2013).

    Article  Google Scholar 

  9. F. Li, K. Yang, X. Liu, J. Zou, J.W. Zhai, B. Shen, P. Li, J. Shen, B.H. Liu, P. Chen, K.Y. Zhao, and H.R. Zeng, Scr. Mater. 141, 15 (2017).

    Article  CAS  Google Scholar 

  10. X. Hao, Y. Wang, J. Yang, S. An, and J. Xu, J. Appl. Phys. 112, 19290 (2012).

    Google Scholar 

  11. H.B. Yang, F. Yan, Y. Lin, T. Wang, L. He, and F. Wang, J. Alloys Compd. 710, 436 (2017).

    Article  CAS  Google Scholar 

  12. Z.B. Pan, L.M. Yao, J.W. Zhai, H.T. Wang, and B. Shen, ACS Appl. Mater. Interfaces 9, 14337 (2017).

    Article  CAS  Google Scholar 

  13. Z.B. Pan, L.M. Yao, J.W.S.S.H. Liu, K. Yang, H.T. Wang, and J.H. Liu, Ceram. Int. 42, 14667 (2016).

    Article  CAS  Google Scholar 

  14. Y.F. Wang, J. Cui, Q.B. Yuan, Y.J. Niu, Y.Y. Bai, and H. Wang, Adv. Mater. 27, 6658 (2015).

    Article  CAS  Google Scholar 

  15. X.Z. Song, Y. Zhang, Y.Z. Chen, Z.Q. Shen, Z.Q. Shen, and T.Y. Zang, J. Mater. Sci. Mater. Electr. 29, 56 (2017).

    Article  Google Scholar 

  16. H.T. Wang, J.H. Liu, J.W. Zhai, and B. Shen, J. Am. Ceram. Soc. 99, 2909 (2016).

    Article  CAS  Google Scholar 

  17. P. Jiang, J.Q. Yuan, H.W. Liu, L.Y. Wang, H.T. Li, W.P. Xie, and Q.M. Zhang, IEEE Trans. Plasma Sci. 45, 698 (2017).

    Article  CAS  Google Scholar 

  18. J.H. Liu, H.T. Wang, B. Shen, J.W. Zhai, P. Li, and Z.B. Pan, J. Am. Ceram. Soc. 100, 506 (2017).

    Article  CAS  Google Scholar 

  19. G.H. Chen, W.J. Zhang, X.Y. Liu, and C.R. Zhou, J. Electroceram. 27, 78 (2011).

    Article  Google Scholar 

  20. S. Xiao, S.M. Xiu, B. Shen, and J.W. Zhai, J. Eur. Ceram. Soc. 36, 4071 (2016).

    Article  CAS  Google Scholar 

  21. S.X. Xue, J.W. Zhai, S. Xiao, S.M. Xiu, and B. Shen, Mater. Lett. 190, 154 (2017).

    Article  CAS  Google Scholar 

  22. Y. Zhou, Q.M. Zhang, J. Luo, Q. Tang, and J. Du, Scr. Mater. 65, 296 (2011).

    Article  CAS  Google Scholar 

  23. T.Y. Liu, G.H. Chen, J. Song, and C.L. Yuan, Ceram. Int. 39, 5553 (2013).

    Article  CAS  Google Scholar 

  24. G.H. Chen, J. Song, X.L. Kang, C.L. Yuan, and C.R. Zhou, Mater. Lett. 136, 302 (2014).

    Article  CAS  Google Scholar 

  25. G.H. Chen, J. Zheng, Z.C. Li, C.L. Yuan, and C.R. Zhou, J. Mater. Sci. Mater. Electron. 27, 8499 (2016).

    Article  CAS  Google Scholar 

  26. S.M. Xiu, S. Xiao, W.Q. Zhang, S.X. Xue, B. Shen, and J.W. Zhai, J. Alloys. Compd. 670, 217 (2016).

    Article  CAS  Google Scholar 

  27. H.T. Wang, J.H. Liu, J.W. Zhai, B. Shen, Z.B. Pan, J.R. Liu, and K. Yang, Ceram. Int. 43, 8898 (2017).

    Article  CAS  Google Scholar 

  28. Y. Zhang, J.J. Huang, T. Ma, X.R. Wang, C.S. Deng, and X.M. Dai, J. Am. Ceram. Soc. 94, 1805 (2011).

    Article  CAS  Google Scholar 

  29. E.P. Gorzkowski, M.J. Pan, B. Bender, and C.C.M. Wu, J. Electroceram. 18, 269 (2007).

    Article  CAS  Google Scholar 

  30. H.T. Wang, J.H. Liu, J.W. Zhai, Z.B. Pan, and B. Shen, J. Eur. Ceram. Soc. 37, 3917 (2017).

    Article  CAS  Google Scholar 

  31. H.T. Wang, J.H. Liu, J.W. Zhai, B. Shen, Z.B. Pan, K. Yang, and J.R. Liu, Ceram. Int. 43, 4183 (2017).

    Article  CAS  Google Scholar 

  32. J.C. Chen, Y. Zhang, C.S. Deng, X.M. Dai, and L.T. Li, J. Am. Ceram. Soc. 92, 1350 (2009).

    Article  CAS  Google Scholar 

  33. H.T. Wang, J.H. Liu, J.W. Zhai, B. Shen, S.M. Xiu, S. Xiao, and Z.B. Pan, J. Alloys Compd. 687, 280 (2016).

    Article  CAS  Google Scholar 

  34. S.X. Xue, J. Wang, S.H. Liu, W.Q. Zhang, L.J. Tang, B. Shen, and J.W. Zhai, Ceram. Int. 40, 7495 (2014).

    Article  CAS  Google Scholar 

  35. J.H. Liu, H.T. Wang, B. Shen, J.W. Zhai, Z.B. Pan, K. Yang, and J.R. Liu, J. Alloys Compd. 722, 212 (2017).

    Article  CAS  Google Scholar 

  36. S.M. Xiu, S. Xiao, S.X. Xue, B. Shen, and J.W. Zhai, J. Electron. Mater. 45, 1017 (2016).

    Article  CAS  Google Scholar 

  37. M.J. Wang, Y. Zhang, X.L. Liu, and X.R. Wang, Ceram. Int. 39, 2069 (2013).

    Article  CAS  Google Scholar 

  38. J. Massera, S. Fagerlund, L. Hupa, and M. Hupa, J. Am. Ceram. Soc. 95, 607 (2012).

    Article  CAS  Google Scholar 

  39. E.P. Gorzkowski, M.J. Pan, B.A. Bender, and C.C.M. Wu, J. Am. Ceram. Soc. 91, 1065 (2008).

    Article  CAS  Google Scholar 

  40. K.L. Ngai and T.L. Reinecke, Phys. Rev. Lett. 38, 74 (1977).

    Article  CAS  Google Scholar 

  41. Z.B. Pan, L.M. Yao, J.W. Zhai, B. Shen, S.H. Liu, and H.T. Wang, J. Mater. Chem. A 4, 13259 (2016).

    Article  CAS  Google Scholar 

  42. H.X. Tang and H.A. Sodano, Nano Lett. 13, 1373 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Sciences and Technology of China through National Basic Research Program of China through 973 Program (2015CB654601), the Doctor Fund of Guizhou Normal University, the Natural Science and Technology Foundation of Guizhou Province under Grant Nos: [2011]2112, the key laboratory of low dimensional condensed matter physics of higher educational institution of Guizhou province (Grant No.[2016]002), and the Guizhou province science and technology innovation talent team (Grant No. (2015)4015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwei Zhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, H., Zhai, J. et al. Crystallization Mechanisms and Energy-Storage Performances in BaO-SrO-Na2O-Nb2O5 Based Glass–Ceramics. J. Electron. Mater. 47, 7429–7434 (2018). https://doi.org/10.1007/s11664-018-6683-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6683-x

Keywords

Navigation