Abstract
The [x BaO, (1 − x) SrO]-Na2O (x = 0.0, 0.2, 0.5, 0.8) niobate-based glass–ceramics were prepared through the controlled crystallization method. Crystallization mechanism, phase structure, dielectric properties, and energy-storage properties were studied by adjusting Ba/Sr ratio. It was found that the surface and internal crystallization occurred simultaneously at first crystallization peak, while surface crystallization occurred at second crystallization peak. With Ba/Sr ratio increasing, dielectric constant increased firstly and then decreased, while dielectric loss firstly decreased and then increased. When x = 0.2, optimal dielectric constant of 88 and dielectric loss of 0.0055 were obtained, which is related to the solid solution phase Sr0.5Ba0.5Nb2O6. Breakdown strength (BDS) showed a behavior of increase before decrease. The highest BDS reaches 1975 kV/cm for x = 0.2, which is attributed to uniform and dense microstructure. Correspondingly, the theoretical energy-storage density was increased up to 15.4 J/cm3. Also, discharged efficiency reaches a high value of 91%. Discharged power density of 0.65 MV/cm3 was obtained for x = 0.2 in the RLC pulsed circuit.
Similar content being viewed by others
References
H.L. Pan, Y.S. Hu, and L.Q. Chen, Energy Environ. Sci. 6, 2338 (2013).
P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H.H.J. Ploehn, and H.C. Zur Loye, Materials 2, 1697 (2009).
K.S. Buchanan, B.X. Zhu, A. Meldru, and M.R. Freeman, Nano Lett. 5, 383 (2005).
Y. Cao, P.C. Irwin, and K. Younsi, IEEE Trans. Dielectr. Electr. Insul. 11, 797 (2004).
M.F. El-Kady, V. Strong, S. Dubin, and R.B. Kaner, Science 335, 1326 (2012).
Z.S. Wu, K. Parves, X.L. Feng, and K. Müllen, Nat. Commun. 4, 2487 (2013).
J.H. Pikul, H.G. Zhang, J. Cho, P.V. Braun, and W.P. King, Nat. Commun. 4, 1732 (2013).
C.W. Cui, Y.P. Pu, Z.Y. Gao, J. Wan, Y.S. Guo, C.Y. Hui, Y.R. Wang, and Y.F. Cui, Struct. J. Alloys Compd. 711, 319 (2013).
F. Li, K. Yang, X. Liu, J. Zou, J.W. Zhai, B. Shen, P. Li, J. Shen, B.H. Liu, P. Chen, K.Y. Zhao, and H.R. Zeng, Scr. Mater. 141, 15 (2017).
X. Hao, Y. Wang, J. Yang, S. An, and J. Xu, J. Appl. Phys. 112, 19290 (2012).
H.B. Yang, F. Yan, Y. Lin, T. Wang, L. He, and F. Wang, J. Alloys Compd. 710, 436 (2017).
Z.B. Pan, L.M. Yao, J.W. Zhai, H.T. Wang, and B. Shen, ACS Appl. Mater. Interfaces 9, 14337 (2017).
Z.B. Pan, L.M. Yao, J.W.S.S.H. Liu, K. Yang, H.T. Wang, and J.H. Liu, Ceram. Int. 42, 14667 (2016).
Y.F. Wang, J. Cui, Q.B. Yuan, Y.J. Niu, Y.Y. Bai, and H. Wang, Adv. Mater. 27, 6658 (2015).
X.Z. Song, Y. Zhang, Y.Z. Chen, Z.Q. Shen, Z.Q. Shen, and T.Y. Zang, J. Mater. Sci. Mater. Electr. 29, 56 (2017).
H.T. Wang, J.H. Liu, J.W. Zhai, and B. Shen, J. Am. Ceram. Soc. 99, 2909 (2016).
P. Jiang, J.Q. Yuan, H.W. Liu, L.Y. Wang, H.T. Li, W.P. Xie, and Q.M. Zhang, IEEE Trans. Plasma Sci. 45, 698 (2017).
J.H. Liu, H.T. Wang, B. Shen, J.W. Zhai, P. Li, and Z.B. Pan, J. Am. Ceram. Soc. 100, 506 (2017).
G.H. Chen, W.J. Zhang, X.Y. Liu, and C.R. Zhou, J. Electroceram. 27, 78 (2011).
S. Xiao, S.M. Xiu, B. Shen, and J.W. Zhai, J. Eur. Ceram. Soc. 36, 4071 (2016).
S.X. Xue, J.W. Zhai, S. Xiao, S.M. Xiu, and B. Shen, Mater. Lett. 190, 154 (2017).
Y. Zhou, Q.M. Zhang, J. Luo, Q. Tang, and J. Du, Scr. Mater. 65, 296 (2011).
T.Y. Liu, G.H. Chen, J. Song, and C.L. Yuan, Ceram. Int. 39, 5553 (2013).
G.H. Chen, J. Song, X.L. Kang, C.L. Yuan, and C.R. Zhou, Mater. Lett. 136, 302 (2014).
G.H. Chen, J. Zheng, Z.C. Li, C.L. Yuan, and C.R. Zhou, J. Mater. Sci. Mater. Electron. 27, 8499 (2016).
S.M. Xiu, S. Xiao, W.Q. Zhang, S.X. Xue, B. Shen, and J.W. Zhai, J. Alloys. Compd. 670, 217 (2016).
H.T. Wang, J.H. Liu, J.W. Zhai, B. Shen, Z.B. Pan, J.R. Liu, and K. Yang, Ceram. Int. 43, 8898 (2017).
Y. Zhang, J.J. Huang, T. Ma, X.R. Wang, C.S. Deng, and X.M. Dai, J. Am. Ceram. Soc. 94, 1805 (2011).
E.P. Gorzkowski, M.J. Pan, B. Bender, and C.C.M. Wu, J. Electroceram. 18, 269 (2007).
H.T. Wang, J.H. Liu, J.W. Zhai, Z.B. Pan, and B. Shen, J. Eur. Ceram. Soc. 37, 3917 (2017).
H.T. Wang, J.H. Liu, J.W. Zhai, B. Shen, Z.B. Pan, K. Yang, and J.R. Liu, Ceram. Int. 43, 4183 (2017).
J.C. Chen, Y. Zhang, C.S. Deng, X.M. Dai, and L.T. Li, J. Am. Ceram. Soc. 92, 1350 (2009).
H.T. Wang, J.H. Liu, J.W. Zhai, B. Shen, S.M. Xiu, S. Xiao, and Z.B. Pan, J. Alloys Compd. 687, 280 (2016).
S.X. Xue, J. Wang, S.H. Liu, W.Q. Zhang, L.J. Tang, B. Shen, and J.W. Zhai, Ceram. Int. 40, 7495 (2014).
J.H. Liu, H.T. Wang, B. Shen, J.W. Zhai, Z.B. Pan, K. Yang, and J.R. Liu, J. Alloys Compd. 722, 212 (2017).
S.M. Xiu, S. Xiao, S.X. Xue, B. Shen, and J.W. Zhai, J. Electron. Mater. 45, 1017 (2016).
M.J. Wang, Y. Zhang, X.L. Liu, and X.R. Wang, Ceram. Int. 39, 2069 (2013).
J. Massera, S. Fagerlund, L. Hupa, and M. Hupa, J. Am. Ceram. Soc. 95, 607 (2012).
E.P. Gorzkowski, M.J. Pan, B.A. Bender, and C.C.M. Wu, J. Am. Ceram. Soc. 91, 1065 (2008).
K.L. Ngai and T.L. Reinecke, Phys. Rev. Lett. 38, 74 (1977).
Z.B. Pan, L.M. Yao, J.W. Zhai, B. Shen, S.H. Liu, and H.T. Wang, J. Mater. Chem. A 4, 13259 (2016).
H.X. Tang and H.A. Sodano, Nano Lett. 13, 1373 (2013).
Acknowledgments
This work was supported by the Ministry of Sciences and Technology of China through National Basic Research Program of China through 973 Program (2015CB654601), the Doctor Fund of Guizhou Normal University, the Natural Science and Technology Foundation of Guizhou Province under Grant Nos: [2011]2112, the key laboratory of low dimensional condensed matter physics of higher educational institution of Guizhou province (Grant No.[2016]002), and the Guizhou province science and technology innovation talent team (Grant No. (2015)4015).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, J., Wang, H., Zhai, J. et al. Crystallization Mechanisms and Energy-Storage Performances in BaO-SrO-Na2O-Nb2O5 Based Glass–Ceramics. J. Electron. Mater. 47, 7429–7434 (2018). https://doi.org/10.1007/s11664-018-6683-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-018-6683-x