Skip to main content
Log in

ECV Doping Profile Measurements in Silicon Using Conventional Potentiostat

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Formation of pn junctions by phosphorus diffusion from liquid dopant in Si was investigated using a custom-built procedure for performing electrochemical capacitance–voltage (ECV) measurements. The feasibility of using a potentiostat equipped with an impedance module was investigated using an algorithm and experimental setup developed for the ECV technique. Using impedance spectroscopy and amperometry methods in a controlled manner, the dopant concentration was measured in the depth range of 600 nm to 900 nm. Sequential etching in NH4F (0.1 M) electrolyte using current–time (It) testing under ultraviolet (UV) illumination was applied to etch the surface of n-type silicon and estimate the diffusion depth. Initial current–voltage (IV) tests were used to determine the bias voltage. The results of the proposed method were compared with those obtained using a commercially available ECV profiler. A conventional parallel equivalent circuit model of the Schottky junction was used to describe the electrolyte–silicon barrier, leading to good agreement between the proposed method and commercial ECV analysis results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Basaran, C.P. Parry, R.A. Kubiak, T.E. Whall, and E.H.C. Parker, J. Cryst. Growth 157, 109 (1995).

    Article  CAS  Google Scholar 

  2. K.J. Kim, J.S. Jang, D.W. Moon, and H.J. Kang, Metrologia 47, 253 (2010).

    Article  CAS  Google Scholar 

  3. L.S. Tan, L.C.P. Tan, and M.S. Leong, J. Vac. Sci. Technol. B 20, 483 (2002).

    Article  CAS  Google Scholar 

  4. T. Clarysse, W. Vandervorst, E.J.H. Collart, and A.J. Murrell, J. Electrochem. Soc. 147, 3569 (2000).

    Article  CAS  Google Scholar 

  5. D.K. Schroder, Semiconductor Material and Device Characterization (NJ: Wiley, 2006), p. 26.

    Google Scholar 

  6. D. Frolov and V. Zubkov, J. Phys. Conf. Series 690, (2016).

  7. E. Başaran, Appl. Surf. Sci. 172, 345 (2001).

    Article  Google Scholar 

  8. V. Zubkov, O. Kucherova, D. Frolov, and A. Zubkova, Phys. Status Solidi (c) 10, 342 (2013).

    Article  CAS  Google Scholar 

  9. J.W.L. Yim, R.E. Jones, K.M. Yu, J.W. Ager lll, W. Walukiewicz, W.J. Schaff, and J. Wu, Phys. Rev. B 76, 041303 (2007).

    Article  Google Scholar 

  10. P.N. Brunkov, A.A. Gutkin, M.E. Rudinsky, O.L. Ronghin, A.A. Sitnikova, B.Y.A. Ber, D. Kazantsev, Y. Egorov, and V.E. Zemlyakov, Semiconductors 45, 811 (2011).

    Article  CAS  Google Scholar 

  11. R.K.J.B.F. Mika and A. Grmanová, J. Electr. Eng. 53, 97 (2002).

    Google Scholar 

  12. K. Gwóźdź, E. Placzek-popko, M. Mikosza, E. Zielony, R. Pietruszka, K. Kopalko, and M. Godlewski, J. Electron. Mater. 46, 4562 (2017).

    Article  Google Scholar 

  13. E. Peiner, A. Schlachetzki, and D. Krüger, J. Electrochem. Soc. 142, 576 (1995).

    Article  CAS  Google Scholar 

  14. V. Gopal, E.H. Chen, E.P. Kvam, and J.M. Woodall, J. Electron. Mater. 29, 1333 (2000).

    Article  CAS  Google Scholar 

  15. D.S. Kim, M.M. Hilali, A. Rohatgi, K. Nakano, A. Hariharan, and K. Matthei, J. Electrochem. Soc. 153, A1391 (2006).

    Article  CAS  Google Scholar 

  16. A. Da Silva Filho and N. Frateschi, J. Electron. Mater. 28, 1428 (1999).

    Article  CAS  Google Scholar 

  17. P.Y.Y. Kan, S.E. Foss, and T.G. Finstad, Mater. Sci. Eng. 137, 63 (2007).

    Article  CAS  Google Scholar 

  18. R.C. Chiechi, E.A. Weiss, M.D. Dickey, and G.M. Whitesides, Angew. Chem. 120, 148 (2008).

    Article  Google Scholar 

  19. A. Santos and T. Kumeria, Electrochemical etching methods for producing porous silicon, pp. 1–36, Electrochemically Engineered Nanoporous Materials. Springer International, Switzerland (2015).

    Google Scholar 

  20. Sh. Willis, DPhil. Thesis, Advanced Optoelectronic Characterisation of Solar Cells University, Oxford (2011).

  21. E. Ishida and S.B. Felch, J. Vac. Sci. Technol. 14, 397 (1996).

    Article  CAS  Google Scholar 

  22. M. Steyer, A. Dastgheib-Shirazi, G. Hahn, and B. Terheiden, Energy Procedia 77, 316 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the members of the Semiconductors Department of Materials and Energy Research Center in Karaj. This research work has been supported by a Research Grant (No. G282839) from the Materials and Energy Research Center (MERC), Karaj, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Eshraghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraei, A., Eshraghi, M.J., Tajabadi, F. et al. ECV Doping Profile Measurements in Silicon Using Conventional Potentiostat. J. Electron. Mater. 47, 7309–7315 (2018). https://doi.org/10.1007/s11664-018-6670-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6670-2

Keywords

Navigation