Skip to main content
Log in

Electron–Phonon Scattering in AlAs and Its Response to Hydrostatic Pressure

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We perform first principles calculations to predict the electron–phonon (e–ph) scattering rates in AlAs and their dependence on phonon modes at energies close to the conduction band minima (CBM), as well as high into the conduction band. We then study the effect of hydrostatic pressure on the e–ph scattering in AlAs for pressures up to \(\sim\) 8.77 GPa. The effect of such pressures on the electronic structure and phonon dispersion is well documented. In AlAs, the bandgap becomes smaller, whereas the effect on phonon dispersion is to shift the optical phonon bands to higher frequencies and the acoustic branches to lower frequencies. In light of this, we explore the effect of hydrostatic pressure on the resulting scattering rates with increasing pressure along the high symmetry \(L\rightarrow \Gamma \rightarrow X\) path. The results suggest that hydrostatic pressure does not significantly affect electron–phonon scattering rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-H. Wei and A. Zunger, Phys. Rev. B 60, 5404 (1999).

    Article  CAS  Google Scholar 

  2. S.Q. Wang and H.Q. Ye, J. Phys. Condens. Matter 14, 9579 (2002).

    Article  CAS  Google Scholar 

  3. M. Cardona, Phys. Status Solidi (b) 241, 3128 (2004).

    Article  CAS  Google Scholar 

  4. J. Noffsinger, F. Giustino, B.D. Malone, C.H. Park, S.G. Louie, and M.L. Cohen, Comput. Phys. Commun. 181, 2140 (2010).

    Article  CAS  Google Scholar 

  5. S. Poncé, E. Margine, C. Verdi, and F. Giustino, Comput. Phys. Commun. 209, 116 (2016).

    Article  Google Scholar 

  6. P.Y. Yu and M. Cardona, Fundamentals of Semiconductors, 4th edn. (Springer, Berlin, 2010).

    Book  Google Scholar 

  7. J.-J. Zhou and M. Bernardi, Phys. Rev. B 94, 201201 (2016).

    Article  Google Scholar 

  8. J. Sjakste, N. Vast, M. Calandra, and F. Mauri, Phys. Rev. B 92, 054307 (2015).

    Article  Google Scholar 

  9. C. Verdi and F. Giustino, Phys. Rev. Lett. 115, 176401 (2015).

    Article  Google Scholar 

  10. N. Tandon, J.D. Albrecht, and L.R. Ram-Mohan, Diam. Rel. Mater. 56, 1 (2015).

    Article  CAS  Google Scholar 

  11. N. Tandon, J.D. Albrecht, and L.R. Ram-Mohan, J. Appl. Phys. 118 (2015). https://doi.org/10.1063/1.4927530

    Article  Google Scholar 

  12. J. Sjakste, N. Vast, H. Jani, S. Obukhov, and V. Tyuterev, Phys. Status Solidi (b) 250, 716 (2013).

    Article  CAS  Google Scholar 

  13. J. Sjakste, V. Tyuterev, and N. Vast, Phys. Rev. B 74, 235216 (2006).

    Article  Google Scholar 

  14. G.C. Liu, Z.W. Lu, and B.M. Klein, Phys. Rev. B 51, 5678 (1995).

    Article  CAS  Google Scholar 

  15. A. Onodera, M. Mimasaka, I. Sakamoto, J. Okumura, K. Sakamoto, S. Uehara, K. Takemura, O. Shimomura, T. Ohtani, and Y. Fujii, J. Phys. Chem. Solids 60, 167 (1999).

    Article  CAS  Google Scholar 

  16. A. Mujica, R.J. Needs, and A. Muñoz, Phys. Rev. B 52, 8881 (1995).

    Article  CAS  Google Scholar 

  17. A. Srivastava, N. Tyagi, U. Sharma, and R. Singh, Mater. Chem. Phys. 125, 66 (2011).

    Article  CAS  Google Scholar 

  18. J. Cai and N. Chen, Phys. Rev. B 75, 174116 (2007).

    Article  Google Scholar 

  19. J.P. Perdew, and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  CAS  Google Scholar 

  20. P. Giannozzi, S. Baroni, N. Bonini et al., J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  21. S. Baroni, S. de Gironcoli, and A.D. Corso, Rev. Mod. Phys. 73, 515 (2001).

    Article  CAS  Google Scholar 

  22. B.D. Malone and M.L. Cohen, J. Phys. Condens. Matter 25, 105503 (2013).

    Article  Google Scholar 

  23. M. Bernardi, D. Vigil-Fowler, C.S. Ong, J.B. Neaton, and S.G. Louie, Proc. Natl. Acad. Sci. 112, 5291 (2015). http://www.pnas.org/content/112/17/5291.full.pdf.

Download references

Acknowledgements

The work at MSU was supported by DARPA (N66001-14-1-4038). HPC facilities at WPI, MSU and AFRL were used for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandan Tandon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tandon, N., Ram-Mohan, L.R. & Albrecht, J.D. Electron–Phonon Scattering in AlAs and Its Response to Hydrostatic Pressure. J. Electron. Mater. 47, 7191–7195 (2018). https://doi.org/10.1007/s11664-018-6651-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6651-5

Keywords

Navigation