Skip to main content

Carbon Nanotube Assisted Enhancement of the Magneto-Optical Kerr Signal in Nickel Thin Films

Abstract

In this paper, the effect of carbon nanotubes (CNTs) acting as a covering layer on the [Glass/Ni] sample was experimentally investigated. To this end, a 48 nm thick Ni thin film was initially deposited on the glass substrate using a thermal evaporation method. Afterward, a spin-coating method was employed to deposit a thin layer of CNTs on the Ni thin film, thereby forming the [Glass/Ni/CNT] structure. Compared to [Glass/Ni] samples, the presence of CNTs led to 100% and 180% enhancement in the longitudinal Kerr signal of spin-coated samples. Field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, UV–Vis spectra and vibrating-sample magnetometer analyses were employed to characterize and investigate the morphology, elemental analysis, and optical and magnetic characteristics of the resulting structures. As a covering layer, the CNTs enhanced the absorption of light in the UV–visible wavelength range while also amplifying the interaction of light with the Ni layer without seriously changing other magnetic properties of the structure. Accordingly, using a simple approach, the Kerr signal was amplified more than three times compared to that of an uncovered sample, providing useful applications for magnetic sensors.

This is a preview of subscription content, access via your institution.

References

  1. S. Iijima, Nature 354, 56 (1991).

    CAS  Article  Google Scholar 

  2. P.G. Collins and P. Avouris, Sci. Am. 283, 62 (2000).

    CAS  Article  Google Scholar 

  3. G.A. Rance, D.H. Marsh, R.J. Nicholas, and A.N. Khlobystov, Chem. Phys. Lett. 493, 19 (2010).

    CAS  Article  Google Scholar 

  4. Q. Jiang, X. Wang, Y. Zhu, D. Hui, and Y. Qiu, Compos. Part. B Eng. 56, 408 (2014).

    CAS  Article  Google Scholar 

  5. J. Che, T. Cagin, and W.A. Goddard III, Nanotechnology 11, 65 (2000).

    CAS  Article  Google Scholar 

  6. J.C. Lasjaunias, C R Phys. 4, 1047 (2003).

    CAS  Article  Google Scholar 

  7. J.P. Salvetat, J.M. Bonard, N.H. Thomson, A.J. Kulik, L. Forro, W. Benoit, and L. Zuppiroli, Appl. Phys. A 69, 255 (1999).

    CAS  Article  Google Scholar 

  8. B.I. Yakobson and P. Avouris, Carbon Nanotubes, ed. M.S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Springer, Berlin, 2001), p. 287.

  9. J. Oh, Y.W. Chang, H.J. Kim, S. Yoo, D.J. Kim, S. Im, Y.J. Park, D. Kim, and K.-H. Yoo, Nano Lett. 10, 2755 (2010).

    CAS  Article  Google Scholar 

  10. E.G. Lee, K.M. Park, J.Y. Jeong, S.H. Lee, J.E. Baek, H.W. Lee, J.K. Jung, and B.H. Chung, Anal. Biochem. 408, 206 (2011).

    CAS  Article  Google Scholar 

  11. M. Mahjouri Samani, Y. Zhou, X. He, W. Xiong, P. Hilger, and Y. Lu, Nanotechnology 24, 035502 (2012).

    Article  Google Scholar 

  12. D. Bang, H. Awano, Y. Saito, and J. Tominaga, J. Electron. Mater. 45, 2496 (2016).

    CAS  Article  Google Scholar 

  13. M. Moradi, Z. Ayareh, and S. Mahmoodi, J. Magn. Magn. Mater. 444, 410 (2017).

    CAS  Article  Google Scholar 

  14. S.M. Hamidi, H. Normohammadi, and M.M. Tehranchi, Opt. Laser Technol. 49, 237 (2013).

    CAS  Article  Google Scholar 

  15. S. Sotiropoulou and N.A. Chaniotakis, Anal. Bioanal. Chem. 375, 103 (2003).

    CAS  Article  Google Scholar 

  16. M. Son, D. Kim, K.S. Park, S. Hong, and T.H. Park, Biosens. Bioelectron. 78, 87 (2016).

    CAS  Article  Google Scholar 

  17. L.A. Bursill, P.A. Stadelmann, J. Peng, and S. Prawer, Phys. Rev. B 49, 2882 (1994).

    CAS  Article  Google Scholar 

  18. N. Hartmann, G. Piredda, J. Berthelot, G.R. Colas des Francs, A. Bouhelier, and A. Hartschuh, Nano Lett. 12, 177 (2011).

    Article  Google Scholar 

  19. H. Peng, J. Am. Chem. Soc. 130, 42 (2008).

    CAS  Article  Google Scholar 

  20. H. Zhang, D. Wei, Y. Liu, B. Wu, L. Huang, H. Xi, J. Chen, G. Yu, H. Kajiura, and Y. Li, Small 5, 2392 (2009).

    CAS  Article  Google Scholar 

  21. C.L. Pint, Y.-Q. Xu, M. Pasquali, and R.H. Hauge, ACS Nano 2, 1871 (2008).

    CAS  Article  Google Scholar 

  22. R.C. Tenent, T.M. Barnes, J.D. Bergeson, A.J. Ferguson, B. To, L.M. Gedvilas, M.J. Heben, and J.L. Blackburn, Adv. Mater. 21, 3210 (2009).

    CAS  Article  Google Scholar 

  23. H.Z. Geng, K.K. Kim, K.P. So, Y.S. Lee, Y. Chang, and Y.H. Lee, J. Am. Chem. Soc. 129, 7758 (2007).

    CAS  Article  Google Scholar 

  24. E.Y. Jang, T.J. Kang, H.W. Im, D.W. Kim, and Y.H. Kim, Small 4, 2255 (2008).

    CAS  Article  Google Scholar 

  25. K. Ahn, D. Kim, O. Kim, and J. Nam, J. Coat. Technol. Res. 12, 855 (2015).

    CAS  Article  Google Scholar 

  26. Y. Hu, Y. Zhu, W. Zhou, H. Wang, J. Yi, S. Xin, W. He, and T. Shen, J. Coat. Technol. Res. 13, 115 (2016).

    CAS  Article  Google Scholar 

  27. T. Kitano, Y. Maeda, and T. Akasaka, Carbon 47, 3559 (2009).

    CAS  Article  Google Scholar 

  28. Z. Ayazi and A. Matin, J. Chromatogr. Sci. 54, 1841 (2016).

    CAS  Google Scholar 

  29. M.L. Geier, J.J. McMorrow, W. Xu, J. Zhu, C.H. Kim, T.J. Marks, and M.C. Hersam, Nat. Nanotechnol. 10, 944 (2015).

    CAS  Article  Google Scholar 

  30. K.J. Baeg, H.J. Jeong, S.Y. Jeong, J.T. Han, and G.-W. Lee, Curr. Appl. Phys. 17, 541 (2017).

    Article  Google Scholar 

  31. N.N. Le, E. Fribourg-Blanc, H.C.T. Phan, D.M.T. Dang, and C.M. Dang, Int. J. Nanotechnol. 15, 3 (2018).

    Article  Google Scholar 

  32. B. Esmailzadeh and M. Moradi, J. Supercond. Novel Magn. 31, 1483 (2018).

  33. M. Moradi, S.M. Mohseni, S. Mahmoodi, D. Rezvani, N. Ansari, S. Chung, and J. Akerman, Electron. Mater. Lett. 11, 440 (2015).

    CAS  Article  Google Scholar 

  34. S. Mahmoodi, M. Moradi, and S. Mohseni, J. Magn. Magn. Mater. 420, 258 (2016).

    CAS  Article  Google Scholar 

  35. J. Swerts, S. Vandezande, K. Temst, and C. Van Haesendonck, Solid State Commun. 131, 359 (2004).

    CAS  Article  Google Scholar 

  36. D. Meyners, H. Brückl, and G. Reiss, J. Appl. Phys. 93, 2676 (2003).

    CAS  Article  Google Scholar 

  37. B. Esmaeilzadeh, M. Moradi, and F. Jahantigh, J. Magn. Magn. Mater. 460, 207 (2018).

    CAS  Article  Google Scholar 

  38. M. Ghanaatshoar and M. Moradi, Opt. Eng. 50, 93801 (2011).

    Article  Google Scholar 

  39. M. Moradi and M. Ghanaatshoar, Opt. Commun. 283, 5053 (2010).

    CAS  Article  Google Scholar 

  40. S. Mahmoodi, M. Moradi, and S. Mohseni, J. Supercond. Novel Magn. 29, 1517 (2016).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Moradi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahmoodi, S., Moradi, M. Carbon Nanotube Assisted Enhancement of the Magneto-Optical Kerr Signal in Nickel Thin Films. J. Electron. Mater. 47, 7069–7074 (2018). https://doi.org/10.1007/s11664-018-6634-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6634-6

Keywords

  • Magneto-optical Kerr signal
  • carbon nanotube
  • thin film
  • covering layer
  • optical absorption