Skip to main content
Log in

High Rate Growth of MOCVD-Derived GdYBCO Films Based on a Simple Self-Heating Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The home-designed metal organic chemical vapor deposition (MOCVD) system was applied to prepare the Gd0.5Y0.5Ba2Cu3O7-δ (GdYBCO) films at a high deposition rate in order to improve the production efficiency and reduce the preparation cost of high temperature superconducting tapes. Based on a simple self-heating method, the distance between the shower head and the substrate surface can be reduced effectively to increase the concentration of metal organic sources on the substrate surface, which can commendably improve the deposition rate of GdYBCO films and the utilization ratio of metal organic sources. At last, the GdYBCO films were successfully prepared on the LaMnO3 template at the high deposition rate of 1 μm/min by the MOCVD process based on the simple self-heating method and the critical current (Ic) was more than 220 A/cm-width (77 K, 0 T), corresponding to the critical current density (Jc) more than 4.4 MA/cm2 (77 K, 0 T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.W. Rupich, X.P. Li, S. Sathyamurthy, C.L.H. Thieme, K. DeMoranville, J. Gannon, and S. Fleshler, IEEE Trans. Appl. Supercond. 23, 6601205 (2013).

    Article  Google Scholar 

  2. Y.F. Zhang, T.F. Lehner, T. Fukushima, H. Sakamoto, and D.W. Hazelton, IEEE Trans. Appl. Supercond. 24, 7500405 (2014).

    Google Scholar 

  3. V. Selvamanickam, Y. Chen, X. Xiong, Y. Xie, X. Zhang, A. Rar, M. Martchevskii, R. Schmidt, K. Lenseth, and J. Herrin, Phys. C 468, 1504 (2008).

    Article  CAS  Google Scholar 

  4. H.J. Sung, M. Park, B.S. Go, and I.K. Yu, Supercond. Sci. Technol. 29, 054001 (2016).

    Article  Google Scholar 

  5. X.Y. Chen, J.X. Jin, Y. Xin, B. Shu, C.L. Tang, Y.P. Zhu, and R.M. Sun, IEEE Trans. Appl. Supercond. 24, 3801606 (2014).

    Google Scholar 

  6. Y.B. Zheng, Y.S. Wang, W. Pi, P. Ju, and Y.S. Wang, Phys. C 507, 59 (2014).

    Article  CAS  Google Scholar 

  7. P. Zhao, A. Ito, R. Tu, and T. Goto, Supercond. Sci. Technol. 23, 125010 (2010).

    Article  Google Scholar 

  8. M. Dürrschnabel, Z. Aabdin, M. Bauer, R. Semerad, W. Prusseit, and O. Eibl, Supercond. Sci. Technol. 25, 105007 (2012).

    Article  Google Scholar 

  9. H.S. Kim, S.S. Oh, H.S. Ha, D. Youm, S.H. Moon, J.H. Kim, S.X. Dou, Y.U. Heo, S.H. Wee, and A. Goyal, Sci. Rep. 4, 04744 (2014).

    Article  Google Scholar 

  10. R.P. Zhao, F. Zhang, Q. Liu, Y.D. Xia, Y.M. Lu, C.B. Cai, B.W. Tao, and Y.R. Li, Supercond. Sci. Technol. 29, 065015 (2016).

    Article  Google Scholar 

  11. K. Nakaoka, M. Yoshizumi, Y. Usui, T. Izumi, and Y. Shiohara, Phys. Proced. 58, 134 (2014).

    Article  CAS  Google Scholar 

  12. H. Yamada, H. Yamasaki, K. Develos-Bagarinao, Y. Nakagawa, Y. Mawatari, J.C. Nie, H. Obara, and S. Kosaka, Supercond. Sci. Technol. 17, 58 (2004).

    Article  CAS  Google Scholar 

  13. V. Matias, E.J. Rowley, Y. Coulter, B. Maiorov, T. Holesinger, C. Yung, V. Glyantsev, and B. Moeckly, Supercond. Sci. Technol. 23, 014018 (2010).

    Article  Google Scholar 

  14. T. Aytug, M. Paranthaman, E.D. Specht, Y. Zhang, K. Kim, Y.L. Zuev, C. Cantoni, A. Goyal, D.K. Christen, V.A. Maroni, Y. Chen, and V. Selvamanickam, Supercond. Sci. Technol. 23, 014005 (2010).

    Article  Google Scholar 

  15. V. Selvamanickam, M.H. Gharahcheshmeh, A. Xu, Y. Zhang, and E. Galstyan, Supercond. Sci. Technol. 28, 072002 (2015).

    Article  Google Scholar 

  16. H. Izumi, K. Ohata, T. Sawada, T. Morishita, and S. Tanaka, Jpn. J. Appl. Phys. 30, 1956 (1991).

    Article  CAS  Google Scholar 

  17. F. Zhang, J. Xiong, R.P. Zhao, Y. Xue, H. Wang, Q.L. Wang, Y.Y. He, P. Zhang, and B.W. Tao, J. Supercond. Nov. Magn. 28, 2697 (2015).

    Article  CAS  Google Scholar 

  18. P. Zhao, A. Ito, T. Kato, D. Yokoe, T. Hirayama, and T. Goto, Supercond. Sci. Technol. 26, 055020 (2013).

    Article  Google Scholar 

  19. A. Ibi, T. Yoshida, T. Izumi, Y. Shiohara, D. Yokoe, T. Kato, and T. Hirayama, Phys. Procedia 81, 97 (2016).

    Article  CAS  Google Scholar 

  20. K. Nakaoka, M. Yoshizumi, Y. Usui, T. Izumi, and Y. Shiohara, Phys. Procedia 58, 134 (2014).

    Article  CAS  Google Scholar 

  21. K. Nakaoka, M. Yoshizumi, Y. Usui, T. Izumi, and Y. Shiohara, Phys. Procedia 27, 196 (2012).

    Article  Google Scholar 

  22. V. Matias, E.J. Rowley, Y. Coulter, B. Maiorov, T. Holesinger, C. Yung, V. Glyantsev, and B. Moeckly, Supercond. Sci. Technol. 23, 014018 (2010).

    Article  Google Scholar 

  23. V. Matias and R.H. Hammond, Phys. Procedia 36, 1440 (2012).

    Article  CAS  Google Scholar 

  24. V. Selvamanickam, Y. Xie, J. Reeves, and Y. Chen, MRS Bull. 29, 579 (2004).

    Article  CAS  Google Scholar 

  25. S. Miyata, K. Matsuse, A. Ibi, T. Izumi, Y. Shiohara, and T. Goto, Supercond. Sci. Technol. 26, 045020 (2013).

    Article  Google Scholar 

  26. F. Zhang, R.P. Zhao, Y. Xue, H. Wang, Y.Y. He, P. Zhang, B.W. Tao, J. Xiong, and Y.R. Li, Appl. Phys. A 122, 81 (2016).

    Article  Google Scholar 

  27. R.P. Zhao, F. Zhang, Q. Liu, Y.D. Xia, Y.M. Lu, C.B. Cai, J. Xiong, B.W. Tao, and Y.R. Li, Supercond. Sci. Technol. 30, 025023 (2017).

    Article  Google Scholar 

  28. H.Y. Zhai, H.M. Christen, P.M. Martin, L. Zhang, and D.H. Lowndes, IEEE Trans. Appl. Supercond. 13, 2622 (2003).

    Article  CAS  Google Scholar 

  29. C. Sheehan, Y. Jung, T. Holesinger, D.M. Feldmann, C. Edney, J.F. Ihlefeld, P.G. Clem, and V. Matias, Appl. Phys. Lett. 98, 071907 (2011).

    Article  Google Scholar 

  30. M.P. Paranthaman, T. Aytug, L. Stan, Q. Jia, C. Cantoni, and S.H. Wee, Supercond. Sci. Technol. 27, 022002 (2014).

    Article  Google Scholar 

  31. Y. Xue, Y.H. Zhang, F. Zhang, R.P. Zhao, H. Wang, J. Xiong, and B.W. Tao, J. Alloy. Compd. 673, 47 (2016).

    Article  CAS  Google Scholar 

  32. S. Kreiskott, P.N. Arendt, J.Y. Coulter, P.C. Dowden, S.R. Foltyn, B.J. Gibbons, V. Matias, and C.J. Sheehan, Supercond. Sci. Technol. 17, S132 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National High-tech R&D Program (No. 2014AA032702). Meanwhile, we also acknowledge the support of the National Natural Science Foundation of China (No. 51702265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bowan Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Liu, Q., Zhang, F. et al. High Rate Growth of MOCVD-Derived GdYBCO Films Based on a Simple Self-Heating Method. J. Electron. Mater. 47, 7062–7068 (2018). https://doi.org/10.1007/s11664-018-6632-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6632-8

Keywords

Navigation