Advertisement

Journal of Electronic Materials

, Volume 47, Issue 12, pp 7062–7068 | Cite as

High Rate Growth of MOCVD-Derived GdYBCO Films Based on a Simple Self-Heating Method

  • Ruipeng Zhao
  • Qing Liu
  • Fei Zhang
  • Yudong Xia
  • Hao Tang
  • Yuming Lu
  • Chuanbing Cai
  • Bowan TaoEmail author
  • Yanrong Li
Article
  • 46 Downloads

Abstract

The home-designed metal organic chemical vapor deposition (MOCVD) system was applied to prepare the Gd0.5Y0.5Ba2Cu3O7-δ (GdYBCO) films at a high deposition rate in order to improve the production efficiency and reduce the preparation cost of high temperature superconducting tapes. Based on a simple self-heating method, the distance between the shower head and the substrate surface can be reduced effectively to increase the concentration of metal organic sources on the substrate surface, which can commendably improve the deposition rate of GdYBCO films and the utilization ratio of metal organic sources. At last, the GdYBCO films were successfully prepared on the LaMnO3 template at the high deposition rate of 1 μm/min by the MOCVD process based on the simple self-heating method and the critical current (Ic) was more than 220 A/cm-width (77 K, 0 T), corresponding to the critical current density (Jc) more than 4.4 MA/cm2 (77 K, 0 T).

Keywords

High deposition rate GdYBCO MOCVD self-heating critical current density 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is supported by the National High-tech R&D Program (No. 2014AA032702). Meanwhile, we also acknowledge the support of the National Natural Science Foundation of China (No. 51702265).

References

  1. 1.
    M.W. Rupich, X.P. Li, S. Sathyamurthy, C.L.H. Thieme, K. DeMoranville, J. Gannon, and S. Fleshler, IEEE Trans. Appl. Supercond. 23, 6601205 (2013).CrossRefGoogle Scholar
  2. 2.
    Y.F. Zhang, T.F. Lehner, T. Fukushima, H. Sakamoto, and D.W. Hazelton, IEEE Trans. Appl. Supercond. 24, 7500405 (2014).Google Scholar
  3. 3.
    V. Selvamanickam, Y. Chen, X. Xiong, Y. Xie, X. Zhang, A. Rar, M. Martchevskii, R. Schmidt, K. Lenseth, and J. Herrin, Phys. C 468, 1504 (2008).CrossRefGoogle Scholar
  4. 4.
    H.J. Sung, M. Park, B.S. Go, and I.K. Yu, Supercond. Sci. Technol. 29, 054001 (2016).CrossRefGoogle Scholar
  5. 5.
    X.Y. Chen, J.X. Jin, Y. Xin, B. Shu, C.L. Tang, Y.P. Zhu, and R.M. Sun, IEEE Trans. Appl. Supercond. 24, 3801606 (2014).Google Scholar
  6. 6.
    Y.B. Zheng, Y.S. Wang, W. Pi, P. Ju, and Y.S. Wang, Phys. C 507, 59 (2014).CrossRefGoogle Scholar
  7. 7.
    P. Zhao, A. Ito, R. Tu, and T. Goto, Supercond. Sci. Technol. 23, 125010 (2010).CrossRefGoogle Scholar
  8. 8.
    M. Dürrschnabel, Z. Aabdin, M. Bauer, R. Semerad, W. Prusseit, and O. Eibl, Supercond. Sci. Technol. 25, 105007 (2012).CrossRefGoogle Scholar
  9. 9.
    H.S. Kim, S.S. Oh, H.S. Ha, D. Youm, S.H. Moon, J.H. Kim, S.X. Dou, Y.U. Heo, S.H. Wee, and A. Goyal, Sci. Rep. 4, 04744 (2014).CrossRefGoogle Scholar
  10. 10.
    R.P. Zhao, F. Zhang, Q. Liu, Y.D. Xia, Y.M. Lu, C.B. Cai, B.W. Tao, and Y.R. Li, Supercond. Sci. Technol. 29, 065015 (2016).CrossRefGoogle Scholar
  11. 11.
    K. Nakaoka, M. Yoshizumi, Y. Usui, T. Izumi, and Y. Shiohara, Phys. Proced. 58, 134 (2014).CrossRefGoogle Scholar
  12. 12.
    H. Yamada, H. Yamasaki, K. Develos-Bagarinao, Y. Nakagawa, Y. Mawatari, J.C. Nie, H. Obara, and S. Kosaka, Supercond. Sci. Technol. 17, 58 (2004).CrossRefGoogle Scholar
  13. 13.
    V. Matias, E.J. Rowley, Y. Coulter, B. Maiorov, T. Holesinger, C. Yung, V. Glyantsev, and B. Moeckly, Supercond. Sci. Technol. 23, 014018 (2010).CrossRefGoogle Scholar
  14. 14.
    T. Aytug, M. Paranthaman, E.D. Specht, Y. Zhang, K. Kim, Y.L. Zuev, C. Cantoni, A. Goyal, D.K. Christen, V.A. Maroni, Y. Chen, and V. Selvamanickam, Supercond. Sci. Technol. 23, 014005 (2010).CrossRefGoogle Scholar
  15. 15.
    V. Selvamanickam, M.H. Gharahcheshmeh, A. Xu, Y. Zhang, and E. Galstyan, Supercond. Sci. Technol. 28, 072002 (2015).CrossRefGoogle Scholar
  16. 16.
    H. Izumi, K. Ohata, T. Sawada, T. Morishita, and S. Tanaka, Jpn. J. Appl. Phys. 30, 1956 (1991).CrossRefGoogle Scholar
  17. 17.
    F. Zhang, J. Xiong, R.P. Zhao, Y. Xue, H. Wang, Q.L. Wang, Y.Y. He, P. Zhang, and B.W. Tao, J. Supercond. Nov. Magn. 28, 2697 (2015).CrossRefGoogle Scholar
  18. 18.
    P. Zhao, A. Ito, T. Kato, D. Yokoe, T. Hirayama, and T. Goto, Supercond. Sci. Technol. 26, 055020 (2013).CrossRefGoogle Scholar
  19. 19.
    A. Ibi, T. Yoshida, T. Izumi, Y. Shiohara, D. Yokoe, T. Kato, and T. Hirayama, Phys. Procedia 81, 97 (2016).CrossRefGoogle Scholar
  20. 20.
    K. Nakaoka, M. Yoshizumi, Y. Usui, T. Izumi, and Y. Shiohara, Phys. Procedia 58, 134 (2014).CrossRefGoogle Scholar
  21. 21.
    K. Nakaoka, M. Yoshizumi, Y. Usui, T. Izumi, and Y. Shiohara, Phys. Procedia 27, 196 (2012).CrossRefGoogle Scholar
  22. 22.
    V. Matias, E.J. Rowley, Y. Coulter, B. Maiorov, T. Holesinger, C. Yung, V. Glyantsev, and B. Moeckly, Supercond. Sci. Technol. 23, 014018 (2010).CrossRefGoogle Scholar
  23. 23.
    V. Matias and R.H. Hammond, Phys. Procedia 36, 1440 (2012).CrossRefGoogle Scholar
  24. 24.
    V. Selvamanickam, Y. Xie, J. Reeves, and Y. Chen, MRS Bull. 29, 579 (2004).CrossRefGoogle Scholar
  25. 25.
    S. Miyata, K. Matsuse, A. Ibi, T. Izumi, Y. Shiohara, and T. Goto, Supercond. Sci. Technol. 26, 045020 (2013).CrossRefGoogle Scholar
  26. 26.
    F. Zhang, R.P. Zhao, Y. Xue, H. Wang, Y.Y. He, P. Zhang, B.W. Tao, J. Xiong, and Y.R. Li, Appl. Phys. A 122, 81 (2016).CrossRefGoogle Scholar
  27. 27.
    R.P. Zhao, F. Zhang, Q. Liu, Y.D. Xia, Y.M. Lu, C.B. Cai, J. Xiong, B.W. Tao, and Y.R. Li, Supercond. Sci. Technol. 30, 025023 (2017).CrossRefGoogle Scholar
  28. 28.
    H.Y. Zhai, H.M. Christen, P.M. Martin, L. Zhang, and D.H. Lowndes, IEEE Trans. Appl. Supercond. 13, 2622 (2003).CrossRefGoogle Scholar
  29. 29.
    C. Sheehan, Y. Jung, T. Holesinger, D.M. Feldmann, C. Edney, J.F. Ihlefeld, P.G. Clem, and V. Matias, Appl. Phys. Lett. 98, 071907 (2011).CrossRefGoogle Scholar
  30. 30.
    M.P. Paranthaman, T. Aytug, L. Stan, Q. Jia, C. Cantoni, and S.H. Wee, Supercond. Sci. Technol. 27, 022002 (2014).CrossRefGoogle Scholar
  31. 31.
    Y. Xue, Y.H. Zhang, F. Zhang, R.P. Zhao, H. Wang, J. Xiong, and B.W. Tao, J. Alloy. Compd. 673, 47 (2016).CrossRefGoogle Scholar
  32. 32.
    S. Kreiskott, P.N. Arendt, J.Y. Coulter, P.C. Dowden, S.R. Foltyn, B.J. Gibbons, V. Matias, and C.J. Sheehan, Supercond. Sci. Technol. 17, S132 (2004).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Ruipeng Zhao
    • 1
  • Qing Liu
    • 1
  • Fei Zhang
    • 2
  • Yudong Xia
    • 3
  • Hao Tang
    • 1
  • Yuming Lu
    • 4
  • Chuanbing Cai
    • 4
  • Bowan Tao
    • 1
    Email author
  • Yanrong Li
    • 1
  1. 1.State Key Lab of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  2. 2.Chengdu Fine Optical Engineering Research CenterChengduPeople’s Republic of China
  3. 3.School of Physical Science and TechnologySouthwest Jiaotong UniversityChengduPeople’s Republic of China
  4. 4.School of PhysicsShanghai UniversityShanghaiPeople’s Republic of China

Personalised recommendations