Skip to main content

Advertisement

Log in

Improvement of the Thermoelectric Properties of the Perovskite SrTiO3 by Cr-Doping

  • Topical Collection: International Conference on Thermoelectrics 2018
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In recent years, among different thermoelectric materials, SrTiO3 have been receiving great attention due to their greater capacity and conversion between electrical energy and heat energy. The thermoelectric properties of the SrTiO3 can be improved by substitutional doping on different sites (A-site and B-site) in the lattice. In this study, the improvement of the thermoelectric performance of the perovskite SrTiO3 by Cr-doping has been investigated. The doped SrTiO3 with Cr was synthesized by the conventional solid-state reaction method. The electronic transport properties including Seebeck coefficient, electrical conductivity, and thermal transport properties in a moderate temperature regime from 300 to 900 K have been investigated. The large absolute value of the Seebeck coefficient with low thermal conductivity was achieved by Cr-doping. The electrical conductivity was quite low but increased with increasing doping level up to x = 0.002 mol, and; hence, the power factor increased with increasing doping level up to x = 0.002 mol. The maximum ZT value was observed for SrTi0.998Cr0.002O3 at 773 K by the combination of a high value of the Seebeck coefficient and low thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Shafiee and R.A. Salim, Energy Policy 66, 547 (2014).

    Article  Google Scholar 

  2. S. Shafiee and E. Topal, Energy Policy 37, 181 (2009).

    Article  Google Scholar 

  3. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. 48, 8616 (2009).

    Article  Google Scholar 

  4. J.-F. Li, W.S. Liu, L.D. Zhao, and M. Zhou, NPG Asia Mater. 2, 152 (2010).

    Article  Google Scholar 

  5. F. Casper, T. Graf, S. Chadov, B. Balke, and C. Felser, Semi-cond. Sci. Technol. 27, 3 (2012).

    Google Scholar 

  6. D.-Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, and M.G. Kanatzidis, Science 287, 1024 (2000).

    Article  Google Scholar 

  7. B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).

    Article  Google Scholar 

  8. R.T. Littleton IV, T.M. Tritt, J.W. Kolis, and D.R. Ketchum, Phys. Rev. B Condens. Matter 60, 13453 (1999).

    Article  Google Scholar 

  9. C. Yu, T. Zhu, R. Shi, Y. Zhang, X. Zhao, and J. He, Acta Mater. 57, 2757 (2009).

    Article  Google Scholar 

  10. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B Condens. Matter 56, R12685 (1997).

    Article  Google Scholar 

  11. A. Weidenkaff, R. Robert, M.H. Aguirre, L. Bocher, T. Lippert, and S. Canulescu, Renew. Energy 33, 342 (2008).

    Article  Google Scholar 

  12. P. Tomes, R. Robert, M. Trottmann, L. Bocher, M.H. Aguirre, J. Hejtmanek, and A. Weidenkaff, J. Electron. Mater. 39, 1696 (2010).

    Article  Google Scholar 

  13. H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, and K. Koumoto, Nat. Mater. 6, 129 (2007).

    Article  Google Scholar 

  14. K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, and R. Funahashi, Annu. Rev. Mater. Res. 40, 363 (2010).

    Article  Google Scholar 

  15. S.Y. Watanebe, J.G. Bednorz, A. Bietsch, C. Gerber, D. Widmer, A. Beck, and S.J. Wind, J. Wind Appl. Phys. Lett. 78, 3738 (2001).

    Article  Google Scholar 

  16. J. Inaba and T. Katsufuji, Phys. Rev. B Condens. Matter Mater. Phys. 72, 054208 (2005).

    Article  Google Scholar 

  17. T. Hara, Mater. Chem. Phys. 91, 243 (2005).

    Article  Google Scholar 

  18. T.H. Fang, Y.J. Hsiao, Y.S. Chang, and Y.H. Chang, Mater. Chem. Phys. 100, 418 (2006).

    Article  Google Scholar 

  19. A. Tkach, P.M. Vilarinho, A.L. Kholkin, A. Paskhin, S. Veljko, and J. Petzelt, Phys. Rev. B Condens. Matter Mater. Phys. 73, 104113 (2006).

    Article  Google Scholar 

  20. R.D. Shannon, Acta Crystallogr. A A32, 751 (1976).

    Article  Google Scholar 

  21. A. Willfahart, Screen Printed Thermoelectric Devices, Linkopings University, SE-601, 74, (2014).

  22. I. Mahmud, M.-S. Yoon, I.-H. Kim, M.-K. Choi, and S.-C. Ur, J. Korean Phys. Soc. 68, 35 (2016).

    Article  Google Scholar 

  23. P.-P. Shang, B.-P. Zhang, Y. Liu, J.-F. Li, and H.-M. Zhu, J. Electron. Mater. 40, 926 (2011).

    Article  Google Scholar 

  24. P.-P. Shang, B.-P. Zhang, J.-F. Li, and N. Ma, Solid State Sci. 12, 1341 (2010).

    Article  Google Scholar 

  25. S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono, and K. Koumoto, Appl. Phys. Lett. 87, 092108 (2005).

    Article  Google Scholar 

  26. T. Okuda, K. Nakanishi, S. Miyasaka, and Y. Tokura, Phys. Rev. B Condens. Matter Mater. Phys. 63, 113104 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant from the Regional Innovation Center (RIC) Program, which was conducted by the Ministry of SMEs and Startpus of the Korean Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Chul Ur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, T.T., Kim, IH. & Ur, SC. Improvement of the Thermoelectric Properties of the Perovskite SrTiO3 by Cr-Doping. J. Electron. Mater. 48, 1864–1869 (2019). https://doi.org/10.1007/s11664-018-6623-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6623-9

Keywords

Navigation