Effect of Coulomb Interactions on the Electronic and Magnetic Properties of Two-Dimensional CrSiTe3 and CrGeTe3 Materials


We investigate the electronic and magnetic structures of two-dimensional transition metal tri-chalcogenide CrSiTe3 and CrGeTe3 materials by carrying out first-principles calculations. The single-layer CrSiTe3 and CrGeTe3 are found to be a ferromagnetic insulator, where the presence of the strong dpσ-hybridization of Cr eg-Te p plays a crucial role for the ferromagnetic coupling between Cr ions. We observe that the bandgaps and the interlayer magnetic order vary notably depending on the magnitude of on-site Coulomb interaction U for Cr d electrons. The bandgaps are formed between the Cr eg conduction bands and the Te p valence bands for both CrSiTe3 and CrGeTe3 in the majority-spin channel. The dominant Te p antibonding character in the valence bands just below the Fermi level is related to the decrease of the bandgap for the increase of U. We elucidate the energy band diagram, which may serve to understand the electronic and magnetic properties of the ABX3-type transition metal tri-chalcogenides in general.

This is a preview of subscription content, log in to check access.


  1. 1.

    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano, Nat. Nanotechnol. 7, 699 (2012).

    Article  Google Scholar 

  2. 2.

    M.A. McGuire, H. Dixit, V.R. Cooper, and B.C. Sales, Chem. Mater. 27, 612 (2015).

    Article  Google Scholar 

  3. 3.

    B. Huang, G. Clark, E. Navarro-Moratalla, D.R. Klein, R. Cheng, K.L. Seyler, D. Zhong, E. Schmidgall, M.A. McGuire, D.H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Nature 546, 270 (2017).

    Article  Google Scholar 

  4. 4.

    N. Sivadas, M.W. Daniels, R.H. Swendsen, S. Okamoto, and D. Xiao, Phys. Rev. B 91, 235425 (2015).

    Article  Google Scholar 

  5. 5.

    A. Wiedenmann, J. Rossat-Mignod, A. Louisy, R. Brec, and J. Rouxel, Solid State Commun. 40, 1067 (1981).

    Article  Google Scholar 

  6. 6.

    R. Brec, Solid State Ion. 22, 3 (1986).

    Article  Google Scholar 

  7. 7.

    B. Siberchicot, S. Jobic, V. Carteaux, P. Gressier, and G. Ouvrard, J. Phys. Chem. 100, 5863 (1996).

    Article  Google Scholar 

  8. 8.

    A.R. Wildes, B. Roessli, B. Lebech, and K.W. Godfrey, J. Phys. Condens. Matter 10, 6417 (1998).

    Article  Google Scholar 

  9. 9.

    P.A. Joy and S. Vasudevan, Phys. Rev. B 46, 5425 (1992).

    Article  Google Scholar 

  10. 10.

    Y. Takano, N. Arai, A. Arai, Y. Takahashi, K. Takase, and K. Sekizawa, J. Magn. Magn. Mater. 272, E593 (2004).

    Article  Google Scholar 

  11. 11.

    M.W. Lin, H.L. Zhuang, J. Yan, T.Z. Ward, A.A. Puretzky, C.M. Rouleau, Z. Gai, L. Liang, V. Meunier, B.G. Sumpter, P. Ganesh, P.R.C. Kent, D.B. Geohegan, D. Mandrus, and K. Xiao, J. Mater. Chem. C 4, 315 (2016).

    Article  Google Scholar 

  12. 12.

    T.J. Williams, A.A. Aczel, M.D. Lumsden, S.E. Nagler, M.B. Stone, J.Q. Yan, and D. Mandrus, Phys. Rev. B 92, 144404 (2015).

    Article  Google Scholar 

  13. 13.

    X. Chen, J. Qi, and D. Shi, Phys. Lett. A 379, 60 (2015).

    Article  Google Scholar 

  14. 14.

    L. Casto, A. Clune, M. Yokosuk, J. Musfeldt, T. Williams, H. Zhuang, M.W. Lin, K. Xiao, R. Hennig, B. Sales, J.Q. Yan, and D. Mandrus, APL Mater. 3, 041515 (2015).

    Article  Google Scholar 

  15. 15.

    The OpenMX Project. http://www.openmx-square.org/.

  16. 16.

    T. Ozaki and H. Kino, Phys. Rev. B 72, 045121 (2005).

    Article  Google Scholar 

  17. 17.

    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  18. 18.

    S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton, Phys. Rev. B 57, 1505 (1998).

    Article  Google Scholar 

  19. 19.

    M.J. Han, T. Ozaki, and J. Yu, Phys. Rev. B 73, 045110 (2006).

    Article  Google Scholar 

  20. 20.

    A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, and G.E. Scuseria, J. Chem. Phys. 125, 224106 (2006).

    Article  Google Scholar 

  21. 21.

    G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  22. 22.

    X. Li and J. Yang, J. Mater. Chem. C 2, 7071 (2014).

    Article  Google Scholar 

  23. 23.

    H.L. Zhuang, Y. Xie, P.R.C. Kent, and P. Ganesh, Phys. Rev. B 92, 035407 (2015).

    Article  Google Scholar 

  24. 24.

    C. Zener, Phys. Rev. 81, 440 (1951).

    Article  Google Scholar 

  25. 25.

    J. Kanamori and K. Terakura, J. Phys. Soc. Jpn. 70, 1433 (2001).

    Article  Google Scholar 

  26. 26.

    L. Wang, T. Maxisch, and G. Ceder, Phys. Rev. B 73, 195107 (2006).

    Article  Google Scholar 

  27. 27.

    H. Ji, R.A. Stokes, L.D. Alegria, E.C. Blomberg, M.A. Tanatar, A. Reijnders, L.M. Schoop, T. Liang, R. Prozorov, K.S. Burch, N.P. Ong, J.R. Petta, and R.J. Cava, J. Appl. Phys. 114, 114907 (2013).

    Article  Google Scholar 

  28. 28.

    A. Fujimori, private communication

  29. 29.

    G.T. Lin, H.L. Zhuang, X. Luo, B.J. Liu, F.C. Chen, J. Yan, Y. Sun, J. Zhou, W.J. Lu, P. Tong, Z.G. Sheng, Z. Qu, W.H. Song, X.B. Zhu, and Y.P. Sun, Phys. Rev. B 95, 245212 (2017).

    Article  Google Scholar 

  30. 30.

    M. Marsman, J. Paier, A. Stroppa, and G. Kresse, J. Phys. Condens. Matter 20, 064201 (2008).

    Article  Google Scholar 

  31. 31.

    W. Li, C.F. Walther, A. Kuc, and T. Heine, J. Chem. Theory Comput. 9, 2950 (2013).

    Article  Google Scholar 

Download references


We gratefully acknowledge A. Fujimori and Kee Hoon Kim for valuable discussions. This work was supported by the National Research Foundation of Korea (NRF) (No. 2017R1A2B4007100). JY gratefully acknowledges the support and hospitality provided by the Max Planck Institute for the Physics of Complex Systems, where this work was completed during his visit to the institute.

Author information



Corresponding author

Correspondence to Jaejun Yu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kang, S., Kang, S. & Yu, J. Effect of Coulomb Interactions on the Electronic and Magnetic Properties of Two-Dimensional CrSiTe3 and CrGeTe3 Materials. Journal of Elec Materi 48, 1441–1445 (2019). https://doi.org/10.1007/s11664-018-6601-2

Download citation


  • Transition metal tri-chalcogenide
  • electronic structure
  • two-dimensional ferromagnetism