Skip to main content
Log in

Structural and Optical Properties of Ce3+-Doped TiO2 Nanocrystals Prepared by Sol–Gel Precursors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ce-doped TiO2 nanoparticles (NPs) with dopant percentages of 1%, 3%, 5% and 10% were synthesized by the sol–gel method with precursors of tetratitanium isopropoxide and cerium nitrate hexahydrate Ce(NO3)3·6H2O. Based on the x-ray diffraction analysis, it was found that the size of NPs declines with an elevation of Ce impurity; for the pure state of 39 nm and the impure sample of 10%, its value declines up to 9 nm. Furthermore, with the addition of cerium impurity, the tetragonal structure of the TiO2 sample remains unchanged with slight variations in the lattice’s constants. The mean size and shape of the NPs were investigated by the transmission electron microscopy analysis, which were observed to be about 12.5 nm and spherical for NPs with 5% dopant. The results of the diffused reflection spectroscopy optical test showed that the band gap of the prepared samples decreases by 10% with increasing of cerium dopant from 2.75 eV for bare TiO2 NPs up to 2.00 eV for NPs with cerium impurity. In addition, photoluminescence analysis shows the intensity diminishes due to doping, causing a recombination of the electron–hole pair in the Ce-doped TiO2 NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Farahmandjou and M. Zarinkamar, J. Ceram. Process. Res. 17, 166 (2016).

    Google Scholar 

  2. M. Farahmandjou and N. Golabiyan, J. Ceram. Process. Res. 16, 237 (2015).

    Google Scholar 

  3. M. Farahmandjou, M. Zarinkamar, and T.P. Firoozabadi, Rev. Mex. Fis. 62, 76 (2016).

    Google Scholar 

  4. M. Dastpak, M. Farahmandjou, and T.P. Firoozabadi, J. Supercond Nov. Magn. 29, 849 (2016).

    Article  Google Scholar 

  5. M. Farahmandjou and F. Soflaee, Chin. J. Phys. 53, 080801 (2015).

    Google Scholar 

  6. M.B. Marami, M. Farahmandjou, and B. Khoshnevisan, J. Electron. Mater. 47, 3741 (2018).

    Article  CAS  Google Scholar 

  7. A. Jafari, S. Khademi, and M. Farahmandjou, Mater. Res. Express (2008). https://doi.org/10.1088/2053-1591/aad5b5.

    Article  Google Scholar 

  8. F. Akhtari, S. Zorriasatein, M. Farahmandjou, and S.M. Elahi, Mater. Res. Express 5, 065015 (2018).

    Article  Google Scholar 

  9. A. Khodadadi, M. Farahmandjou, M. Yaghoubi, and A.R. Amani, Int. J. Appl. Ceram. Technol. (2018). https://doi.org/10.1111/ijac.13065.

    Article  Google Scholar 

  10. M. Farahmandjou, S. Honarbakhsh, and S. Behrouzinia, J. Supercond. Nov. Magn. (2018). https://doi.org/10.1007/s10948-018-4659-y.

    Article  Google Scholar 

  11. M. Zarinkamar, M. Farahmandjou, and T.P. Firoozabadi, J. Nanostruct. 6, 116 (2016).

    CAS  Google Scholar 

  12. M. Farahmandjou, Chin. Phys. Lett. 29, 077306 (2012).

    Article  Google Scholar 

  13. W. Chung-Yi, L. Yuan-Ling, L. Yu-Shiu, L. Chen-Jui, and W. Chen-Hou, Appl. Surf. Sci. 280, 737 (2013).

    Article  Google Scholar 

  14. M. Ramazani, M. Farahmandjou, and T.P. Firoozabadi, Phys. Chem. Res. 3, 293 (2015).

    CAS  Google Scholar 

  15. M. Ramazani, M. Farahmandjou, and T.P. Firoozabadi, Int. J. Nanosci. Nanotech. 11, 115 (2015).

    Google Scholar 

  16. M. Farahmandjou and P. Khalili, Aust. J. Basic Appl. Sci. 7, 462 (2013).

    CAS  Google Scholar 

  17. M. Farahmandjou, J. Comput. Robot. 5, 15 (2014).

    Google Scholar 

  18. A. Worayingyong, S. Sang-urai, M.F. Smith, S. Maensiri, and S. Seraphin, Appl. Phys. A Mater. Sci. Process. 117, 1191 (2014).

    Article  CAS  Google Scholar 

  19. S.H. Wang and S.Q. Zhou, J. Hazard. Mater. 185, 77 (2011).

    Article  CAS  Google Scholar 

  20. W. Xue, G. Zhang, X. Xu, X. Yang, C. Liu, and Y. Xu, Chem. Eng. J. 167, 397 (2011).

    Article  CAS  Google Scholar 

  21. B. Khoshnevisan, M.B. Marami, and M. Farahmandjou, Chin. Phys. Lett. 35, 027501 (2018).

    Article  Google Scholar 

  22. T. Marimuthu, N. Anandhan, S. Rajendran, M. Mummoorthy, and M. Vidhya, Int. J. ChemTech Res. 6, 5309 (2014).

    CAS  Google Scholar 

  23. C.H. Wei, X.H. Tang, J.R. Liang, and S.Y. Tan, J. Environ. Sci. 19, 90 (2007).

    Article  CAS  Google Scholar 

  24. J.R. Xiao, T.Y. Peng, R. Li, Z.H. Peng, and C.H. Yan, J. Solid State Chem. 179, 1161 (2006).

    Article  CAS  Google Scholar 

  25. F. Akhtari, S. Zorriasatein, M. Farahmandjou, and S.M. Elahi, Int. J. Appl. Ceram. Technol. 15, 723 (2018).

    Article  CAS  Google Scholar 

  26. S. Jurablu, M. Farahmandjou, and T.P. Firoozabadi, J. Sci. 26, 281 (2015).

    Google Scholar 

  27. S. Jurablu, M. Farahmandjou, and T.P. Firoozabadi, J. Theor. Appl. Phys. 9, 261 (2015).

    Article  Google Scholar 

  28. C.H. Liang, F.B. Li, C.S. Liu, J.L. Lu, and X.G. Wang, Dyes Pigments 76, 477 (2008).

    Article  CAS  Google Scholar 

  29. M.T. Adrián Silva, G. Cláudia Silva, G. Dražić, and L. Joaquim Faria, Catal. Today 144, 13 (2009).

    Article  Google Scholar 

  30. Y.J. Xu, Y. Zhuang, and X. Fu, J. Phys. Chem. C 114, 2669 (2010).

    Article  CAS  Google Scholar 

  31. N. Shaari, S.H. Tan, and A.R. Mohamed, J. Rare Earth 30, 651 (2012).

    Article  CAS  Google Scholar 

  32. C.Y. Hu, R.F. Zhang, J.H. Xiang, T.Z. Liu, W.K. Li, M.S. Li, S.W. Duo, and F. Wei, J. Solid State Chem. 184, 1286 (2011).

    Article  CAS  Google Scholar 

  33. P. Scherrer, Math. Phys. Kl. 2, 98 (1918).

    Google Scholar 

  34. M. Farahmandjou, J. Supercond. Nov. Magn. 25, 2075 (2012).

    Article  CAS  Google Scholar 

  35. A. León, P. Reuquen, C. Garín, R. Segura, P. Vargas, P. Zapata, and P.A. Orihuela, Appl. Sci. 7, 49 (2017).

    Article  Google Scholar 

  36. S. Khatoon, I.A. Wani, J. Ahmed, T. Magdaleno, O.A. Al-Hartomy, and T. Ahmad, Mater. Chem. Phys. 138, 519 (2013).

    Article  CAS  Google Scholar 

  37. B. Choudhury, B. Borah, and A. Choudhury, Photochem. Photobiol. 88, 257 (2012).

    Article  CAS  Google Scholar 

  38. W. Siripala and M. Tomkieviez, Electrochem. Soc. 129, 1240 (1982).

    Article  CAS  Google Scholar 

  39. S.W. Chen, J.M. Lee, K.T. Lu, C.W. Pao, J.F. Lee, T.S. Chan, and J.M. Chen, Appl. Phys. Lett. 97, 012104 (2010).

    Article  Google Scholar 

  40. P.J.G. Coutinho, M. Teresa, and C.M. Barbosa, J. Fluoresc. 16, 387 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Zanjan University for financial support of this study as a Ph.D. thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Farahmandjou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, A., Khademi, S., Farahmandjou, M. et al. Structural and Optical Properties of Ce3+-Doped TiO2 Nanocrystals Prepared by Sol–Gel Precursors. J. Electron. Mater. 47, 6901–6908 (2018). https://doi.org/10.1007/s11664-018-6590-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6590-1

Keywords

Navigation