Skip to main content
Log in

Effect of Tb Doping on Structural and Optical Properties of (Cd0.8-Zn0.2)S Films Deposited Through a Chemical Route

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Tb-doped (Cd0.8-Zn0.2)S films have been prepared on glass substrates at 60°C by a chemical bath deposition technique. The effect of variation in the molar concentration of terbium (Tb) on the optical properties of the deposited films has been investigated and is discussed. The films have been characterized through x-ray diffraction (XRD), scanning electron microscopy (SEM), UV–Vis absorption and photoluminescence (PL) emission spectral studies. Prominent diffraction lines of CdS and ZnS with maximum orientation towards (111)c plane of CdS are observed in XRD patterns. Particle sizes calculated from XRD studies using Scherrer’s formula are found to be in the nano-range. The SEM micrographs of bulk film showed a layered structure, while a honey-comb structure with thickness of layers in the nano-range is seen for the deposited films. From the optical absorption spectra, a blue shift in the absorption edge is distinctly observed in the nanocrystalline films as compared to bulk film, suggesting the involvement of a quantum confinement effect. PL emission spectra showed distinct emission peaks for bulk and nanocrystalline films. PL emissions due to transitions within Tb3+ levels are also observed. The characteristic green emission peak due to 5D4-7F2 transition in Tb at 620 nm is observed in all three cases. Various studies suggest that the deposited films have potential applications in photo-electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Zhou, Z. Fu, J. Zhang, and S. Zhang, J. Lumin. 118, 179 (2006).

    Article  CAS  Google Scholar 

  2. A. Edelstein and R.C. Cammarata, Nanomaterials Synthesis Properties and Applications (Bristol: Institute of Physics Publishing, 1996).

    Book  Google Scholar 

  3. A.A. Oladiran, A. Oluwaseun, and S.K. Kolawole, IJRRAS 12, 420 (2012).

    Google Scholar 

  4. M. Sreenivas, G. Harish, and P.S. Reddy, Int. J. Adv. Res. 2, 468 (2014).

    Google Scholar 

  5. J. Hasanzadeh, S.S. Farjani, and Z.A. Abdolahzadeh, Acta Phys. Pol., A 126, 713 (2014).

    Article  CAS  Google Scholar 

  6. A.M. Salem, Appl. Phys. A 74, 205 (2002).

    Article  CAS  Google Scholar 

  7. S.Y. Kim, D.S. Kim, B.T. Ahn, and H.B. Im, J. Mater. Sci.: Mater. Electron. 4, 178 (1993).

    Google Scholar 

  8. A.O. Dmitrienko, T.A. Akmaeva, A.F. Bol’shakov, V.V. Mikhajlova, and N.N. Bylinkina, Neorgan. Mater. 29, 390 (1993).

    CAS  Google Scholar 

  9. S. Guha, B.J. Wu, H. Cheng, and J.M. Depuydt, Appl. Phys. Lett. 63, 2129 (1993).

    Article  CAS  Google Scholar 

  10. M.K. Mustafa, M.L. Abdullah, Z.T.M. Noori, and M.A. Jumma, Indian J. Pure Appl. Phys. 53, 617 (2015).

    Google Scholar 

  11. J. Jin, S.L. Li, Y.Q. Tian, Y.J. Zhang, Y. Liu, Y.Y. Zhao, T.S. Shi, and T.J. Li, Thin Solid Films 327–329, 559 (1998).

    Article  Google Scholar 

  12. M.K. Karanjai and D. Dasgupta, Thin Sol. Films 150, 309 (1987).

    Article  Google Scholar 

  13. A. Kathalingam, N. Ambika, M.R. Kim, J. Elanchezhiyan, Y.S. Chae, and J.K. Rhee, Mater. Sci. Pol. 28, 514 (2010).

    Google Scholar 

  14. B.R. Sankapal, S.D. Sartale, C.D. Lokhande, and A. Ennaoui, Sol. Energy Mater. Solar Cells 83, 447 (2004).

    Article  CAS  Google Scholar 

  15. P.K. Nair, M.T.S. Nair, V.M. Garcia, O.L. Arenas, Y. Pena, A. Castillo, I.T. Ayala, O. Gomezdaza, A. Sanchez, J. Campos, H. Hu, R. Suarez, and M.E. Rincon, Sol. Energy Mater. Sol. Cells 52, 313 (1998).

    Article  CAS  Google Scholar 

  16. R.S. Mane and C.D. Lokhande, Mater. Chem. Phys. 65, 1 (2000).

    Article  CAS  Google Scholar 

  17. U. Waggon, Optical Properties of Semiconductor Quantum Dots (Berlin: Springer, 1996).

    Google Scholar 

  18. A.I. Ekimov, A.L. Efros, and A.A. Onushchenko, Sol. State Commun. 56, 921 (1985).

    Article  CAS  Google Scholar 

  19. M. Gao, S. Kirstein, H. Mohwald, A.L. Rogach, A. Kornowski, A. Eychmuller, and H. Weller, J. Phys. Chem. 102, 8360 (1998).

    Article  CAS  Google Scholar 

  20. G. Wakefield, H.A. Keron, P.J. Dobson, and J.L. Hutchison, J. Phys. Chem. Solids 60, 503 (1999).

    Article  CAS  Google Scholar 

  21. N. Yukami, M. Ikeda, Y. Harada, and M. Nishikura, Electron. Devices IEEE 33, 520 (1986).

    Article  Google Scholar 

  22. R. Reisfield, T. Saraidarov, E. Ziganski, M. Gaft, L. Stafan, and M. Pietraszkiewicz, J. Lumin. 102, 243 (2003).

    Article  Google Scholar 

  23. A.J. Kenyon, Prog. Quantum Electron. 26, 225 (2002).

    Article  CAS  Google Scholar 

  24. A. Eychmueller, J. Phys. Chem. B 104, 6514 (2000).

    Article  CAS  Google Scholar 

  25. U.M. Jadhav, M.S. Shinde, S.N. Patel, and R.S. Patil, Indian J. Pure Appl. Phys. 52, 39 (2014).

    CAS  Google Scholar 

  26. A.A. Al-Jubory, Int. J. Sci. Technol. 2, 707 (2012).

    Google Scholar 

  27. H.L. Pushpalatha, S. Bellappa, T.N. Narayanswami, and R. Ganesha, Indian J. Pure Appl. Phys. 52, 545 (2014).

    Google Scholar 

  28. D. Xia, T. Caijuan, T. Rongzhe, L. Wei, F. Lianghuan, Z. Jingquan, W. Lili, and L. Zhi, J. Semicond. 32, 022003-1 (2011).

    Google Scholar 

  29. K. Hadasa, G. Yellaiah, and M. Nagabhushanam, Optik Int. J. Light Elect. Opt. 125, 6602 (2014).

    Article  CAS  Google Scholar 

  30. L.V. Garcia, M.I. Mendivil, G.G. Guillen, J.A.A. Martinez, B. Krishnan, D. Avellaneda, G.A. Castillo, T.K.D. Roy, and S. Shaji, Appl. Surf. Sci. 336, 329 (2015).

    Article  CAS  Google Scholar 

  31. Z. Han, G. Chen, C. Li, Y. Yu, and Y. Zhou, J. Mater. Chem. A 3, 1696 (2015).

    Article  CAS  Google Scholar 

  32. V.B. Sanap and B.H. Pawar, Chelco Lett. 6, 415 (2009).

    CAS  Google Scholar 

  33. D.S. Kshatri and A. Khare, J. Lumin. 155, 257 (2014).

    Article  CAS  Google Scholar 

  34. A.K. Zak, W.H.A. Majid, M.E. Abrishami, and R. Yousefi, Solid State Sci. 13, 251 (2011).

    Article  Google Scholar 

  35. S. Bhushan and S. Pillai, Cryst. Res. Technol. 43, 762 (2008).

    Article  CAS  Google Scholar 

  36. K. Deshmukh, S. Bhushan, and M. Mukherjee, Chalco Lett. 7, 11 (2010).

    CAS  Google Scholar 

  37. X. Li, H. Zhu, J. Wei, K. Wang, E. Xu, Z. Li, and D. Wu, Appl. Phys. A 97, 341 (2009).

    Article  CAS  Google Scholar 

  38. D.L. Smith and C. Marlhiot, Rev. Mod. Phys. 62, 173 (1990).

    Article  CAS  Google Scholar 

  39. R. Swanepoel, J. Phys. E 16, 1214 (1983).

    Article  CAS  Google Scholar 

  40. J.C. Manifacier, J. Gasiot, and J.P. Fillard, J. Phys. E 9, 1002 (1976).

    Article  CAS  Google Scholar 

  41. S. Ilican, M. Caglar, and Y. Caglar, Mater. Sci. Pol. 25, 651 (2007).

    Google Scholar 

  42. E. Guneri and A. Kariper, J. Alloys Compd. 516, 20 (2012).

    Article  Google Scholar 

  43. M. Zakria, A. Mahmood, A. Shah, Q. Razaa, T.M. Khan, and E. Ahmed, Progr. Nat. Sci. Mater. Int. 22, 281 (2012).

    Article  Google Scholar 

  44. K.K. Nanda, S.N. Sarangi, and S.N. Sahu, J. Phys. D Appl. Phys. 32, 2306 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayush Khare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lilhare, D., Pillai, S. & Khare, A. Effect of Tb Doping on Structural and Optical Properties of (Cd0.8-Zn0.2)S Films Deposited Through a Chemical Route. J. Electron. Mater. 47, 6532–6539 (2018). https://doi.org/10.1007/s11664-018-6554-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6554-5

Keywords

Navigation