Skip to main content

Porous Carbon Nanosheets Prepared from Plastic Wastes for Supercapacitors

Abstract

With the rise of living standards, non-biodegradable waste, especially waste plastics, has caused serious environmental problems. Herein, we prepare nitrogen doped porous carbon nanosheets (N-PCNs) using magnesium hydroxide [Mg(OH)2] sheets, which are modified by Zn and Co bimetallic zeolitic imidazolate framework nanoparticles as templates and polystyrene (PS) as a carbon precursor. During the high-temperature pyrolysis process, PS pyrolyzes into small organic molecule gases, which can be converted into graphene-like carbon material under the catalyst magnesia (MgO) and Co species. Nitrogen is introduced into the carbon material in situ by the pyrolysis of imidazole ligands, and the evaporation of Zn helps increase the surface area. The obtained N-PCNs with porous structure and large specific surface area can be used as electrode material for supercapacitors, exhibiting excellent capacitance of 149 F g−1 at the current density of 0.5 A g−1, an excellent cycling stability of 97.6% for up to 5000 cycles.

Graphical Abstract

References

  1. D. Xanthos and T.R. Walker, Mar. Pollut. Bull. 118, 17 (2017).

    Article  Google Scholar 

  2. L. Milios, L.H. Christensen, D. McKinnon, C. Christensen, M.K. Raschb, and M.H. Eriksen, Waste Manag (2018). https://doi.org/10.1016/j.wasman.2018.03.034.

    Google Scholar 

  3. C.W. Zhou and Y.A. Levendis, J. Appl. Polym. Sci. 131, 1001 (2014).

    Article  Google Scholar 

  4. W.S. Fonseca, X.H. Meng, and D. Deng, ACS Sustain. Chem. Eng. 3, 2153 (2015).

    Article  Google Scholar 

  5. C.L. Long, X. Chen, L.L. Jiang, L.J. Zhi, and Z.J. Fan, Nano Energy 12, 141 (2015).

    Article  Google Scholar 

  6. J.H. Hou, T. Cao, F. Idrees, and C. Cao, Nanoscale 8, 451 (2016).

    Article  Google Scholar 

  7. B. You, J.H. Jiang, S.J. Fan, and A.C.S. Appl, Mater. Interfaces 6, 15302 (2014).

    Article  Google Scholar 

  8. J.H. Hou, C.B. Cao, F. Idrees, and X. Ma, ACS Nano 9, 2556 (2015).

    Article  Google Scholar 

  9. J. Gong, J. Liu, Z.W. Jiang, X.C. Chen, X. Wen, E. Mijowska, and T. Tang, Appl. Catal. B 152–153, 289 (2014).

    Article  Google Scholar 

  10. A. Bazargan, Y. Yan, D.C.W. Hui, and G. McKay, Ind. Eng. Chem. Res. 52, 12689 (2013).

    Article  Google Scholar 

  11. J.H. Zhang, L.M. Zhang, H. Yang, Q.H. Kong, Y.H. Liu, and A.H. Yuan, CrystEngComm 16, 8832 (2014).

    Article  Google Scholar 

  12. J. Gong, J. Liu, X.C. Chen, X. Wen, Z.W. Jiang, E. Mijowska, Y.H. Wang, and T. Tang, Microporous Mesoporous Mater. 176, 31 (2013).

    Article  Google Scholar 

  13. H.B. Hu, L. Gao, C.L. Chen, and Q.W. Chen, Environ. Sci. Technol. 48, 2928 (2014).

    Article  Google Scholar 

  14. V.G. Pol, Environ. Sci. Technol. 44, 4753 (2010).

    Article  Google Scholar 

  15. S. Sharma, G. Kalita, R. Hirano, S.M. Shinde, R. Papon, H. Ohtani, and M. Tanemura, Carbon 72, 66 (2014).

    Article  Google Scholar 

  16. J. Gong, J. Liu, X.C. Chen, Z.W. Jiang, X. Wen, E. Mijowskac, and T. Tang, J. Mater. Chem. A 3, 341 (2015).

    Article  Google Scholar 

  17. H. Peng, G.F. Ma, K.J. Sun, Z.G. Zhang, Q. Yang, and Z.Q. Lei, Electrochim. Acta 190, 862 (2016).

    Article  Google Scholar 

  18. N. Wang, C.X. Wu, J.X. Li, G.F. Dong, L.H. Guan, and A.C.S. Appl, Mater. Interfaces 3, 4185 (2011).

    Article  Google Scholar 

  19. L. Qie, W.M. Chen, Z.H. Wang, Q.G. Shao, X. Li, L.X. Yuan, X.L. Hu, W.X. Zhang, and Y.H. Huang, Adv. Mater. 24, 2047 (2012).

    Article  Google Scholar 

  20. L. Qie, W.M. Chen, H.H. Xu, X.Q. Xiong, Y. Jiang, F. Zou, X.L. Hu, Y. Xin, Z.L. Zhang, and Y.H. Huang, Energy Environ. Sci. 6, 2497 (2013).

    Article  Google Scholar 

  21. Y.Y. Li, Z.S. Li, and P.K. Shen, Adv. Mater. 25, 2474 (2013).

    Article  Google Scholar 

  22. F. Xu, R.J. Cai, Q.C. Zeng, C. Zou, D. Wu, F. Li, X. Lu, Y. Liang, and R.W. Fu, J. Mater. Chem. 21, 1970 (2011).

    Article  Google Scholar 

  23. L. Wan, J.L. Wang, L.J. Xie, Y.H. Sun, K.X. Li, and A.C.S. Appl, Mater. Interfaces 6, 15583 (2014).

    Article  Google Scholar 

  24. Z.M. Zheng, X. Zhang, F. Pei, Y. Dai, X.L. Fang, T.H. Wang, and N.F. Zheng, J. Mater. Chem. A 3, 19800 (2015).

    Article  Google Scholar 

  25. Z.Q. Xie, Z.Y. He, X.H. Feng, W.W. Xu, X.D. Cui, J.H. Zhang, C. Yan, M.A. Carreon, Z. Liu, Y. Wang, and A.C.S. Appl, Mater. Interfaces 8, 10324 (2016).

    Article  Google Scholar 

  26. Z.Q. Li and L.W. Yin, J. Mater. Chem. A 3, 21569 (2015).

    Article  Google Scholar 

  27. T. Chen, B.R. Cheng, G.Y. Zhu, R.P. Chen, Y. Hu, L.B. Ma, H.L. Lv, Y.R. Wang, J. Liang, Z.X. Tie, Z. Jin, and J. Liu, Nano Lett. 17, 437 (2017).

    Article  Google Scholar 

  28. T. Chen, B.R. Cheng, G.Y. Zhu, R.P. Chen, Y. Hu, L.B. Ma, H.L. Lv, Y.R. Wang, J. Liang, Z.X. Tie, Z. Jin, J. Liu, and A.C.S. Appl, Mater. Interfaces 8, 26834 (2016).

    Article  Google Scholar 

  29. Y.L. Wen, J. Liu, J.F. Song, J. Gong, H. Chen, and T. Tang, RSC Adv. 5, 105047 (2015).

    Article  Google Scholar 

  30. H.J. Wang, X.X. Sun, Z.H. Liu, and Z.B. Lei, Nanoscale 6, 6577 (2014).

    Article  Google Scholar 

  31. A.F. Gross, E. Sherman, and J.J. Vajo, Dalton Trans. 41, 5458 (2012).

    Article  Google Scholar 

  32. H. Li, Y. Su, W.W. Sun, and Y. Wang, Adv. Funct. Mater. 26, 8345 (2016).

    Article  Google Scholar 

  33. L. Liu, H.L. Zhang, G.X. Wang, J. Du, Y.T. Zhang, X.Y. Fu, and A.B. Chen, J. Mater. Sci. 52, 9640 (2017).

    Article  Google Scholar 

  34. K. Qin, Y.X. Su, J.Y. Zhi, H.Z. Xian, X.X. Zhao, B.H. Rong, and S.Z. Lan, Carbon 42, 1737 (2004).

    Article  Google Scholar 

  35. J. Wang, H.Y. Liu, J.Y. Diao, X.M. Gu, H.H. Wang, J.F. Rong, B.N. Zong, and D.S. Su, J. Mater. Chem. A 3, 2305 (2015).

    Article  Google Scholar 

  36. J.P. Han, G.Y. Xu, B. Ding, J. Pan, H. Dou, and D.R. MacFarlane, J. Mater. Chem. A 2, 5352 (2014).

    Article  Google Scholar 

  37. X.Q. Wang, C.G. Liu, D. Neff, P.F. Fulvio, R.T. Mayes, A. Zhamun, Q. Fang, G.R. Chen, H.M. Meyer, B.Z. Jang, and S. Dai, J. Mater. Chem. A 1, 7920 (2013).

    Article  Google Scholar 

  38. X.C. Zhao, Q. Zhang, B.S. Zhang, C.M. Chen, A.Q. Wang, T. Zhang, and D.S. Su, J. Mater. Chem. 22, 4963 (2012).

    Article  Google Scholar 

  39. Z.J. Fan, Y. Liu, J. Yan, G.Q. Ning, Q. Wang, T. Wei, L.J. Zhi, and F. Wei, Adv. Energy Mater. 2, 419 (2012).

    Article  Google Scholar 

  40. M. Sevilla and A.B. Fuertes, ACS Nano 8, 5069 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21676070), Hebei Natural Science Foundation (B2015208109), Hebei Training Program for Talent Project (A201500117), Five Platform Open Fund Projects of Hebei University of Science and Technology (2015PT37), Hebei One Hundred-Excellent Innovative Talent Program(III) (SLRC2017034), Hebei Science and Technology Project (17214304D, 16214510D), The Excellent Going Abroad Experts’ Training Program in Hebei Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aibing Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Liu, L., Zhang, L. et al. Porous Carbon Nanosheets Prepared from Plastic Wastes for Supercapacitors. J. Electron. Mater. 47, 5816–5824 (2018). https://doi.org/10.1007/s11664-018-6497-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6497-x

Keywords

  • Polystyrene
  • Mg(OH)2 sheets
  • zeolitic imidazolate
  • porous structure
  • supercapacitor