Skip to main content
Log in

Modulation of Negative Differential Resistance in Graphene Field-Effect Transistors by Tuning the Contact Resistances

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript


Graphene and molybdenum disulfide are two-dimensional novel materials considered promising for nanoscale electronic devices. Due to high carrier mobility and in spite of lacking a bandgap, nanoscale graphene transistors have been demonstrated to reach a cut-off frequency above 400 GHz. The absence of bandgap in graphene leads to a remarkable band-to-band tunneling property in electron devices with negative differential resistance. Ultra-thin field-effect transistors fabricated with graphene as gate conducting channels have been shown experimentally to exhibit negative differential resistance (NDR) with widespread appeal for both digital and analog electronics. NDR devices like the Esaki pn junction have been known to have applications for high frequency oscillators, fast logic switches, memories and low-power amplifiers. In this work, a semi-analytical model equation for transfer characteristics of graphene transistors is developed to successfully model the NDR. Data from three known experimental devices exhibiting NDR with gate length from 500 nm to 3 μm are shown to match well with theoretical modeled results. Numerical calculations using the model equation show that at a fixed gate bias, NDR can be modulated by tuning the value of contact resistance. The result also shows that separate onset of NDR in purely electron current or hole current can be modeled with this equation and matches experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. M.C. Lemme, T.J. Echtermeyer, M. Baus, and H. Kurz, IEEE Electron Dev. Lett. 28, 282 (2007).

    Article  Google Scholar 

  2. Accessed 30 June 2018

  3. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, and A.K. Geim, Phys. Rev. Lett. 100, 016602 (2008).

    Article  Google Scholar 

  4. J. Chen, C. Jang, and S. Xiao, Nat. Nanotechnol. 3, 206 (2008).

    Article  Google Scholar 

  5. S. Takagi, S.M. Iwase, and A. Toriumi, IEEE International Electron Devices Meeting, Technical Digest (1988), p. 398.

  6. M.S. Shur, IEEE Electron Dev. Lett. 23, 511 (2002).

    Article  Google Scholar 

  7. R. Cheng, J. Bai, L. Liao, H. Zhou, Y. Chen, L. Liu, Y.C. Lin, S. Jiang, Y. Huang, and X. Duan, Proc. Nat. Acad. Sci 109, 11588 (2012).

    Article  Google Scholar 

  8. J. Zheng, L. Wang, R. Quhe, Q. Liu, H. Li, D. Yu, W.-N. Mei, J. Shi, and Z. Gao, Sci. Rep. 3, 1314 (2013).

    Article  Google Scholar 

  9. J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J.H. Smet, K. von Klitzing, and A. Yacoby, Nat. Phys. 4, 144 (2013).

    Article  Google Scholar 

  10. D. Reddy, L.F. Register, G.D. Carpenter, and S.K. Banerjee, J. Phys. D 44, 313001 (2010).

    Article  Google Scholar 

  11. Y. Wu, D.B. Farmer, W. Zhu, S.-J. Han, C.D. Dimitrakopoulos, A.A. Bol, P. Avouris, and Y.-M. Lin, ACS Nano 6, 2610 (2012).

    Article  Google Scholar 

  12. S. Sharma, L.S. Bernard, A. Bazigos, A. Magrez, and A.M. Ionescu, ACS Nano 9, 620 (2015).

    Article  Google Scholar 

  13. L. Esaki, Phys. Rev. 109, 603 (1958).

    Article  Google Scholar 

  14. K.W. Lee, C.W. Jang, D.H. Shin, J.M. Kim, S.S. Kang, D.H. Lee, S. Kim, S.-H. Choi, and E. Hwang, Sci. Rep. 6, 30669 (2016).

    Article  Google Scholar 

  15. M. Dragoman, A. Dinescu, and D. Dragoman, Nanotechnology 25, 415201 (2014).

    Article  Google Scholar 

  16. M. Rashidi, M. Taucer, I. Ozfidan, E. Lloyd, M. Koleini, H. Labidi, J. Pitters, J. Maciejko, and R. Wolkow, Phys. Rev. Lett. 117, 276805 (2016).

    Article  Google Scholar 

  17. R. Grassi, T. Low, A. Gnudi, and G. Baccarani, IEEE Trans. Electron Dev. 60, 140 (2013).

    Article  Google Scholar 

  18. P.X. Tran, J. Electron. Mater. 6, 3390 (2017).

    Article  Google Scholar 

  19. Y. Xu, T. Minari, K. Tsukagoshi, J.A. Chroboczek, and G. Ghibaudo, J. Appl. Phys. 107, 114507 (2010).

    Article  Google Scholar 

  20. L. Liao, J. Bai, Y. Qu, Y.-C. Lin, Y. Li, Y. Huang, and X. Duan, Proc. Nat. Acad. Sci. 107, 6711 (2010).

    Article  Google Scholar 

  21. T. Cusati, G. Fiori, A. Gahoi, V. Passi, M. Lemme, A. Fortunelli, and G. Iannaccone, Sci. Rep. 7, 5109 (2017).

    Article  Google Scholar 

  22. J. Sivek, O. Leenaerts, B. Partoens, and F. Peeters, arXiv:1301.3654 [cond-mat.mtrl-sci].

  23. F. Xia, V. Perebeinos, Y.-M. Lin, Y. Wu, and P. Avouris, Nat. Nanotechnol. 6, 179 (2011).

    Article  Google Scholar 

  24. W.H. Lee, J. Park, S.H. Sim, S.B. Jo, K.S. Kim, B.H. Hong, and K. Cho, Adv. Mater. 23, 1752 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to P. X. Tran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, P.X. Modulation of Negative Differential Resistance in Graphene Field-Effect Transistors by Tuning the Contact Resistances. J. Electron. Mater. 47, 5905–5912 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: