Skip to main content

Transition of p- to n-Type Conductivity in Mechanically Activated Bismuth Telluride

Abstract

Bismuth telluride (Bi2Te3) exhibits a transition from p- to n-type conduction as a result of high-energy ball milling. The transition is monitored over mechanical activation through measurement of the thermoelectric properties in the temperature range of 1.9 K to 390 K. Data show a flip in polarity of the Seebeck coefficient from 225 μV K−1 for the bulk sample to − 120 μV K−1 (at 315 K) that correlates to fracturing the layered-like structure of stoichiometric Bi2Te3 into platelets and fine particles. The electronic transition is generated by fracturing the crystal 90° to the basal plane. This is the structural equivalent to inducing n-type, anti-site defects on grain boundaries. The observed phenomenon could be exploited to fabricate p- and n-type legs for thermoelectric devices from the same material. In this report, we demonstrate that the value of the Seebeck coefficient for bismuth telluride can be tuned using mechanical treatment. We also determine how mechanical activation of Bi2Te3 impacts physical properties of the system, including: particle size, crystal structure, band gap, electrical and thermal conductivity, carrier concentration and mobility, average hopping distance, and the concentration of localized charged centers.

References

  1. H.J. Goldsmid, A.R. Sheard, and D.A. Wright, Br. J. Appl. Phys. 9, 365 (1958).

    Article  Google Scholar 

  2. Y. Feutelais, B. Legendre, N. Rodier, and V. Agafonov, Mater. Res. Bull. 28, 591 (1993).

    Article  Google Scholar 

  3. J. Houston Dycus, R.M. White, J.M. Pierce, R. Venkatasubramanian, and J.M. LeBeau, Appl. Phys. Lett. 102, 081601 (2013).

    Article  Google Scholar 

  4. W. Lu, Y. Ding, Y. Chen, A. Zhong, and L. Wang, J. Am. Chem. Soc. 127, 10112 (2005).

    Article  Google Scholar 

  5. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Article  Google Scholar 

  6. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002).

    Article  Google Scholar 

  7. E.J. Menke, M.A. Brown, Q. Li, A.J.C. Hemminger, and R.M. Penner, Langmuir 22, 10564 (2006).

    Article  Google Scholar 

  8. D.H. Kim and T. Mitani, J. Alloys Compd. 399, 14 (2005).

    Article  Google Scholar 

  9. J.P. Fleurial, L. Gailliard, R. Triboulet, H. Scherrer, and S. Scherrer, J. Phys. Chem. Solids 49, 1237 (1988).

    Article  Google Scholar 

  10. L.D. Zhao, B.-P. Zhang, W.S. Liu, H.L. Zhang, and J.-F. Li, J. Alloys Compd. 467, 91 (2009).

    Article  Google Scholar 

  11. G. Zhang, B. Kirk, L.A. Jauregui, H. Yang, X. Xu, Y.P. Chen, and Y. Wu, Nano Lett. 12, 56 (2012).

    Article  Google Scholar 

  12. M. Saleemi, M.S. Toprak, S. Li, M. Johnsson, and M. Muhammed, J. Mater. Chem. 22, 725 (2012).

    Article  Google Scholar 

  13. S. Sumithra, N.J. Takas, D.K. Misra, W.M. Nolting, P.F.P. Poudeu, and K.L. Stokes, Adv. Energy Mater. 1, 1141 (2011).

    Article  Google Scholar 

  14. Y. Zhang, X.L. Wang, W.K. Yeoh, R.K. Zheng, and C. Zhang, Appl. Phys. Lett. 101, 31909 (2012).

    Article  Google Scholar 

  15. Y. Zhao, J.S. Dyck, B.M. Hernandez, and C. Burda, J. Phys. Chem. C 114, 11607 (2010).

    Article  Google Scholar 

  16. C. Kuo, C. Hwang, M. Jeng, W. Su, and Y. Chou, J. Alloys Compd. 496, 687 (2010).

    Article  Google Scholar 

  17. A. Kanatzia, C. Papageorgiou, C. Lioutas, and T. Kyratsi, J. Electron. Mater. 42, 1652 (2013).

    Article  Google Scholar 

  18. Y. Pan, T.-R. Wei, Q. Cao, and J.-F. Li, Mater. Sci. Eng. B 197, 75 (2015).

    Article  Google Scholar 

  19. L. Hu, T. Zhu, X. Liu, and X. Zhao, Adv. Funct. Mater. 24, 5211 (2014).

    Article  Google Scholar 

  20. M. Takashiri, K. Miyazaki, S. Tanaka, J. Kurosaki, D. Nagai, and H. Tsukamoto, J. Appl. Phys. 104, 84302 (2008).

    Article  Google Scholar 

  21. H.J. Goldsmid and J.W. Sharp, J. Electron. Mater. 28, 869 (1999).

    Article  Google Scholar 

  22. J.H. Son, M.W. Oh, B.S. Kim, S.D. Park, B.K. Min, M.H. Kim, and H.W. Lee, J. Alloys Compd. 566, 168 (2013).

    Article  Google Scholar 

  23. C. Li, A.L. Ruoff, and C.W. Spencer, J. Appl. Phys. 32, 1733 (1961).

    Article  Google Scholar 

  24. M. Cutler and N.F. Mott, Phys. Rev. 181, 1336 (1969).

    Article  Google Scholar 

  25. N.F. Mott and M. Kaveh, Philos. Mag. Part B 47, L17 (1983).

    Article  Google Scholar 

  26. N.F. Mott and M. Kaveh, Adv. Phys. 34, 329 (1985).

    Article  Google Scholar 

  27. A. MehdizadehDehkordi, M. Zebarjadi, J. He, and T.M. Tritt, Mater. Sci. Eng. R Rep. 97, 1 (2015).

    Article  Google Scholar 

  28. J. Navrátil, Z. Starý, and T. Plecháček, Mater. Res. Bull. 31, 1559 (1996).

    Article  Google Scholar 

  29. M. Sumets, G.C. Dannangoda, A. Kostyuchenko, V. Ievlev, V. Dybov, and K.S. Martirosyan, Mater. Chem. Phys. 191, 35 (2017).

    Article  Google Scholar 

  30. P.M. Chaikin and G. Beni, Phys. Rev. B 13, 647 (1976).

    Article  Google Scholar 

  31. I.G. Austin and N.F. Mott, Adv. Phys. 50, 757 (2001).

    Article  Google Scholar 

  32. M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke, and H. Weller, Adv. Funct. Mater. 19, 3476 (2009).

    Article  Google Scholar 

  33. E.E. Foos, M.S. Rhonda, and A.D. Berry, Nano Lett. 1, 693 (2001).

    Article  Google Scholar 

  34. M.R. Dirmyer, J. Martin, G.S. Nolas, A. Sen, and J.V. Badding, Small 5, 933 (2009).

    Article  Google Scholar 

  35. H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nat. Phys. 5, 438 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support of this research by NSF PREM (Award DMR-1523577: UTRGV-UMN Partnership for Fostering Innovation by Bridging Excellence in Research and Student Success).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.S. Martirosyan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dannangoda, G., Key, C., Sumets, M. et al. Transition of p- to n-Type Conductivity in Mechanically Activated Bismuth Telluride. J. Electron. Mater. 47, 5800–5809 (2018). https://doi.org/10.1007/s11664-018-6469-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6469-1

Keywords

  • Bismuth telluride
  • p- to n-type conduction
  • Seebeck coefficient
  • mechanical activation