Advertisement

Journal of Electronic Materials

, Volume 47, Issue 10, pp 5800–5809 | Cite as

Transition of p- to n-Type Conductivity in Mechanically Activated Bismuth Telluride

  • G.C. Dannangoda
  • C. Key
  • M. Sumets
  • K.S. MartirosyanEmail author
Article

Abstract

Bismuth telluride (Bi2Te3) exhibits a transition from p- to n-type conduction as a result of high-energy ball milling. The transition is monitored over mechanical activation through measurement of the thermoelectric properties in the temperature range of 1.9 K to 390 K. Data show a flip in polarity of the Seebeck coefficient from 225 μV K−1 for the bulk sample to − 120 μV K−1 (at 315 K) that correlates to fracturing the layered-like structure of stoichiometric Bi2Te3 into platelets and fine particles. The electronic transition is generated by fracturing the crystal 90° to the basal plane. This is the structural equivalent to inducing n-type, anti-site defects on grain boundaries. The observed phenomenon could be exploited to fabricate p- and n-type legs for thermoelectric devices from the same material. In this report, we demonstrate that the value of the Seebeck coefficient for bismuth telluride can be tuned using mechanical treatment. We also determine how mechanical activation of Bi2Te3 impacts physical properties of the system, including: particle size, crystal structure, band gap, electrical and thermal conductivity, carrier concentration and mobility, average hopping distance, and the concentration of localized charged centers.

Keywords

Bismuth telluride p- to n-type conduction Seebeck coefficient mechanical activation 

Notes

Acknowledgements

We would like to acknowledge the financial support of this research by NSF PREM (Award DMR-1523577: UTRGV-UMN Partnership for Fostering Innovation by Bridging Excellence in Research and Student Success).

References

  1. 1.
    H.J. Goldsmid, A.R. Sheard, and D.A. Wright, Br. J. Appl. Phys. 9, 365 (1958).CrossRefGoogle Scholar
  2. 2.
    Y. Feutelais, B. Legendre, N. Rodier, and V. Agafonov, Mater. Res. Bull. 28, 591 (1993).CrossRefGoogle Scholar
  3. 3.
    J. Houston Dycus, R.M. White, J.M. Pierce, R. Venkatasubramanian, and J.M. LeBeau, Appl. Phys. Lett. 102, 081601 (2013).CrossRefGoogle Scholar
  4. 4.
    W. Lu, Y. Ding, Y. Chen, A. Zhong, and L. Wang, J. Am. Chem. Soc. 127, 10112 (2005).CrossRefGoogle Scholar
  5. 5.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).CrossRefGoogle Scholar
  6. 6.
    T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002).CrossRefGoogle Scholar
  7. 7.
    E.J. Menke, M.A. Brown, Q. Li, A.J.C. Hemminger, and R.M. Penner, Langmuir 22, 10564 (2006).CrossRefGoogle Scholar
  8. 8.
    D.H. Kim and T. Mitani, J. Alloys Compd. 399, 14 (2005).CrossRefGoogle Scholar
  9. 9.
    J.P. Fleurial, L. Gailliard, R. Triboulet, H. Scherrer, and S. Scherrer, J. Phys. Chem. Solids 49, 1237 (1988).CrossRefGoogle Scholar
  10. 10.
    L.D. Zhao, B.-P. Zhang, W.S. Liu, H.L. Zhang, and J.-F. Li, J. Alloys Compd. 467, 91 (2009).CrossRefGoogle Scholar
  11. 11.
    G. Zhang, B. Kirk, L.A. Jauregui, H. Yang, X. Xu, Y.P. Chen, and Y. Wu, Nano Lett. 12, 56 (2012).CrossRefGoogle Scholar
  12. 12.
    M. Saleemi, M.S. Toprak, S. Li, M. Johnsson, and M. Muhammed, J. Mater. Chem. 22, 725 (2012).CrossRefGoogle Scholar
  13. 13.
    S. Sumithra, N.J. Takas, D.K. Misra, W.M. Nolting, P.F.P. Poudeu, and K.L. Stokes, Adv. Energy Mater. 1, 1141 (2011).CrossRefGoogle Scholar
  14. 14.
    Y. Zhang, X.L. Wang, W.K. Yeoh, R.K. Zheng, and C. Zhang, Appl. Phys. Lett. 101, 31909 (2012).CrossRefGoogle Scholar
  15. 15.
    Y. Zhao, J.S. Dyck, B.M. Hernandez, and C. Burda, J. Phys. Chem. C 114, 11607 (2010).CrossRefGoogle Scholar
  16. 16.
    C. Kuo, C. Hwang, M. Jeng, W. Su, and Y. Chou, J. Alloys Compd. 496, 687 (2010).CrossRefGoogle Scholar
  17. 17.
    A. Kanatzia, C. Papageorgiou, C. Lioutas, and T. Kyratsi, J. Electron. Mater. 42, 1652 (2013).CrossRefGoogle Scholar
  18. 18.
    Y. Pan, T.-R. Wei, Q. Cao, and J.-F. Li, Mater. Sci. Eng. B 197, 75 (2015).CrossRefGoogle Scholar
  19. 19.
    L. Hu, T. Zhu, X. Liu, and X. Zhao, Adv. Funct. Mater. 24, 5211 (2014).CrossRefGoogle Scholar
  20. 20.
    M. Takashiri, K. Miyazaki, S. Tanaka, J. Kurosaki, D. Nagai, and H. Tsukamoto, J. Appl. Phys. 104, 84302 (2008).CrossRefGoogle Scholar
  21. 21.
    H.J. Goldsmid and J.W. Sharp, J. Electron. Mater. 28, 869 (1999).CrossRefGoogle Scholar
  22. 22.
    J.H. Son, M.W. Oh, B.S. Kim, S.D. Park, B.K. Min, M.H. Kim, and H.W. Lee, J. Alloys Compd. 566, 168 (2013).CrossRefGoogle Scholar
  23. 23.
    C. Li, A.L. Ruoff, and C.W. Spencer, J. Appl. Phys. 32, 1733 (1961).CrossRefGoogle Scholar
  24. 24.
    M. Cutler and N.F. Mott, Phys. Rev. 181, 1336 (1969).CrossRefGoogle Scholar
  25. 25.
    N.F. Mott and M. Kaveh, Philos. Mag. Part B 47, L17 (1983).CrossRefGoogle Scholar
  26. 26.
    N.F. Mott and M. Kaveh, Adv. Phys. 34, 329 (1985).CrossRefGoogle Scholar
  27. 27.
    A. MehdizadehDehkordi, M. Zebarjadi, J. He, and T.M. Tritt, Mater. Sci. Eng. R Rep. 97, 1 (2015).CrossRefGoogle Scholar
  28. 28.
    J. Navrátil, Z. Starý, and T. Plecháček, Mater. Res. Bull. 31, 1559 (1996).CrossRefGoogle Scholar
  29. 29.
    M. Sumets, G.C. Dannangoda, A. Kostyuchenko, V. Ievlev, V. Dybov, and K.S. Martirosyan, Mater. Chem. Phys. 191, 35 (2017).CrossRefGoogle Scholar
  30. 30.
    P.M. Chaikin and G. Beni, Phys. Rev. B 13, 647 (1976).CrossRefGoogle Scholar
  31. 31.
    I.G. Austin and N.F. Mott, Adv. Phys. 50, 757 (2001).CrossRefGoogle Scholar
  32. 32.
    M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke, and H. Weller, Adv. Funct. Mater. 19, 3476 (2009).CrossRefGoogle Scholar
  33. 33.
    E.E. Foos, M.S. Rhonda, and A.D. Berry, Nano Lett. 1, 693 (2001).CrossRefGoogle Scholar
  34. 34.
    M.R. Dirmyer, J. Martin, G.S. Nolas, A. Sen, and J.V. Badding, Small 5, 933 (2009).CrossRefGoogle Scholar
  35. 35.
    H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nat. Phys. 5, 438 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • G.C. Dannangoda
    • 1
  • C. Key
    • 1
  • M. Sumets
    • 1
  • K.S. Martirosyan
    • 1
    Email author
  1. 1.Department of Physics and AstronomyUniversity of Texas Rio Grande ValleyBrownsvilleUSA

Personalised recommendations