Skip to main content
Log in

Structural, Dielectric and Electrical Characteristics of Lead-Free Ferroelectric Ceramic: Bi2SmTiVO9

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Studies of structural and electrical properties of Bi2SmTiVO9, a member of the Aurivillius family, synthesized by a mixed oxide reaction method are discussed here. The compound crystallizes in the orthorhombic crystal system. Detailed analysis of surface morphology (using field emission surface electron microscopy and an energy dispersive x-ray analysis profile) has confirmed the formation of high quality samples (i.e., homogeneous distribution of densely populated grains and elements present in required quantity/ratio). Analysis of impedance and modulus data provide the mechanism of dielectric relaxation and transport properties in the sample. The experimental values of the real component of dielectric constant between 250 and 420 and loss tangent between 0.03 and 0.7 of the studied material (Bi2SmTiVO9), obtained in the frequency range of 300 kHz–1 MHz and temperature range of 300–500°C, suggest its applications for high frequency-high temperature devices. The analyses of AC conductivity of the system obeys the universal Jonscher’s power law, and the conduction mechanism of the Correlated Barrier Hopping model type. The existence of a hysteresis loop at room temperature supports the ferroelectric nature in the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.E. Newnham, R.W. Wolfe, and J.F. Dorrian, Mater. Res. Bull. 6, 1029 (1971).

    Article  Google Scholar 

  2. H. Yan, H. Zhang, R. Ubic, M.J. Reece, J. Liu, Z. Shen, and Z. Zhang, Adv. Mater. 17, 1261 (2005).

    Article  Google Scholar 

  3. D. Damjanovic, Curr. Opin. Solid State Mater. Sci. 3, 469 (1998).

    Article  Google Scholar 

  4. E.C. Subbarao, J. Phys. Chem. Solids 23, 665 (1962).

    Article  Google Scholar 

  5. H. Amorin, V.V. Shvartsman, A.L. Kholkin, and M.E. Costa, Appl. Phys. Lett. 85, 5667 (2004).

    Article  Google Scholar 

  6. B. Kennedy, J. Mater. Chem. 9, 541 (1999).

    Article  Google Scholar 

  7. B. Li, X. Wang, X. Han, X. Qi, and L. Li, J. Mater. Sci. 39, 2621 (2004).

    Article  Google Scholar 

  8. H. Yan, H. Zhang, M.J. Reece, and X. Dong, Appl. Phys. Lett. 87, 082911 (2005).

    Article  Google Scholar 

  9. H. Yan, H. Zhang, R. Ubic, M.J. Reece, J. Liu, and Z. Shen, J. Mater. Sci. Mater. Electron. 17, 657 (2006).

    Article  Google Scholar 

  10. C.A.-P. de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, and J.F. Scott, Nature 374, 627 (1995).

    Article  Google Scholar 

  11. R.L. Withers, J.G. Thompson, and A.D. Rae, J. Solid State Chem. 94, 404 (1991).

    Article  Google Scholar 

  12. C. Jovalekić, M. Pavlović, P. Osmokrović, and L. Atanasoska, Appl. Phys. Lett. 72, 1051 (1998).

    Article  Google Scholar 

  13. Z. Zhou, X. Dong, H. Yan, H. Chen, and C. Mao, J. Appl. Phys. 100, 044112 (2006).

    Article  Google Scholar 

  14. H. Du, S. Wohlrab, and S. Kaskel, J. Phys. Chem. C 111, 11095 (2007).

    Article  Google Scholar 

  15. H. Du, L. Tang, and S. Kaskel, J. Phys. Chem. C 113, 1329 (2009).

    Article  Google Scholar 

  16. H. Yan, H. Zhang, and M.J. Reece, J. Appl. Phys. 106, 044106 (2009).

    Article  Google Scholar 

  17. L. Yan, L.B. Kong, and C.K. Ong, Mater. Lett. 58, 2953 (2004).

    Article  Google Scholar 

  18. P. Gupta, R. Padhee, P.K. Mahapatra, and R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 28, 17344 (2017).

    Article  Google Scholar 

  19. R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).

    Article  Google Scholar 

  20. E. Wu, POWD, An Interactive Powder Diffraction Data Interpretation and Indexing Program, Version 2.1 (School of Physical Sciences, Flinders University South, Bedford Park, Australia).

  21. Y.T. Prabhu, K.V. Rao, V.S.S. Kumar, and B.S. Kumari, World J. Nano Sci. Eng. 4, 21 (2014).

    Article  Google Scholar 

  22. R.C. Turner, P.A. Fuierer, R.E. Newnham, and T.R. Shrout, Appl. Acoust. 41, 299 (1994).

    Article  Google Scholar 

  23. S. Kojima, R. Imaizumi, S. Hamazaki, and M. Takashige, Jpn. J. Appl. Phys. 33, 5559 (1994).

    Article  Google Scholar 

  24. S. Sen and R.N.P. Choudhary, Mater. Chem. Phys. 87, 256 (2004).

    Article  Google Scholar 

  25. S. Lanfredi and A.C. Rodrigues, J. Appl. Phys. 86, 2215 (1999).

    Article  Google Scholar 

  26. S. Zhang and F. Yu, J. Am. Ceram. Soc. 94, 3153 (2011).

    Article  Google Scholar 

  27. T.S. Irvine, D.C. Sinclair, and A.R. West, Adv. Mater. 2, 132 (1990).

    Article  Google Scholar 

  28. D.C. Sinclair and A.R. West, J. Appl. Phys. 66, 3850 (1989).

    Article  Google Scholar 

  29. T. Acharya and R.N.P. Choudhary, IEEE Trans. Dielectr. Electr. Insul. 22, 3521 (2015).

    Article  Google Scholar 

  30. K. Parida, S.K. Dehury, and R.N.P. Choudhary, Phys. Lett. A 380, 4083 (2016).

    Article  Google Scholar 

  31. B. Yeum, ZSimpWinVersion 2.00. (Echem Software, Ann Arbor, MI, USA).

  32. S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, M.L. Nandagoswami, and A. Kumar, Mater. Res. Express 3, 065017 (2016).

    Article  Google Scholar 

  33. I.M. Hodge, M.D. Ingram, and A.R. West, J. Electroanal. Chem. Interfacial Electrochem. 58, 429 (1975).

    Article  Google Scholar 

  34. R. Padhee, P.R. Das, B.N. Parida, and R.N.P. Choudhary, J. Phys. Chem. Solids 74, 377 (2013).

    Article  Google Scholar 

  35. N. Kumar, S.K. Patri, and R.N.P. Choudhary, J. Alloys Compd. 615, 456 (2014).

    Article  Google Scholar 

  36. F.C. Chiu, Adv. Mater. Sci. Eng. 2014, 1 (2014).

  37. Z. Wang, X.M. Chen, L. Ni, and X.Q. Liu, Appl. Phys. Lett. 90, 022904 (2007).

    Article  Google Scholar 

  38. A.K. Behera, N.K. Mohanty, S.K. Satpathy, B. Behera, and P. Nayak, Acta Metall. Sin. (Engl. Lett.) 28, 847 (2015).

    Article  Google Scholar 

  39. G.E. Pike, Phys. Rev. B 6, 1572 (1972).

    Article  Google Scholar 

  40. Y.B. Taher, A. Oueslati, and M. Gargouri, J. Alloys Compd. 668, 206 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their gratitude and sincere thanks to Mrs. Satyabati Das, Indian Institute of Technology, Bhubaneswar for providing some experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhasini Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Mahapatra, P.K. & Choudhary, R.N.P. Structural, Dielectric and Electrical Characteristics of Lead-Free Ferroelectric Ceramic: Bi2SmTiVO9. J. Electron. Mater. 47, 5458–5467 (2018). https://doi.org/10.1007/s11664-018-6444-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6444-x

Keywords

Navigation