Skip to main content
Log in

A Rapid One-Pot Synthesis of CuO Rice-Like Nanostructure and Its Structural, Optical and Electrochemical Performance

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report the production of high stable rice-like CuO nanostructures synthesized by a facile and one-step hydrothermal method using urea as a fuel agent. The thermogravimetric nature, phase purity, morphology, and structure of rice-like CuO nanostructures have been characterized by thermogravimetric–differential thermal analysis, powder x-ray diffraction (PXRD), field-emission scanning electron microscopy (FESEM), and energy dispersive x-ray spectroscopy. PXRD revealed the formation of monoclinic CuO with an average crystallite size of around 20 nm. FESEM showed a rice-like morphology with an average size of 40–50 and 100–120 nm along the shorter axis and longer axis, respectively. UV-DRS analysis confirmed a considerable blue-shift in the optical band gap (E = 1.45 eV) owing to a quantum confinement effect. X-ray photoelectron spectroscopy and electron paramagnetic resonance spectra confirmed the presence of copper in Cu2+ state. Furthermore, we can use these electrodes for their electrochemical supercapacitive properties, like cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectra. The nano-rice CuO showed an enhanced specific capacitance of 305 F/g at a current density of 1 A/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Simon, Y. Gogotsi, and B. Dunn, Science 343, 1210 (2014).

    Article  Google Scholar 

  2. G.P. Wang, L. Zhang, and J. Zhang, Chem. Soc. Rev. 41, 797 (2012).

    Article  Google Scholar 

  3. M. Winter and R.J. Brodd, Chem. Rev. 104, 4245 (2004).

    Article  Google Scholar 

  4. W.S. Seo, H.H. Jo, K. Lee, B. Kim, S.J. Oh, and J.T. Park, Angew. Chem. Int. Ed. 43, 1115 (2004).

    Article  Google Scholar 

  5. V. Senthilkumar, F.B. Kadumudi, N.T. Ho, J.W. Kim, S. Park, J.S. Bae, W.M. Choi, S. Cho, and Y.S. Kim, J. Power Sources 303, 363 (2016).

    Article  Google Scholar 

  6. X. Zhang, R. Gaoa, Z. Lia, Z. Hua, H. Liu, and X. Liu, Electrochim. Acta 201, 134 (2016).

    Article  Google Scholar 

  7. J. Liu, N. Chen, and Q. Pan, J. Power Sources 299, 265 (2015).

    Article  Google Scholar 

  8. Abhijit A. Yadav, T.B. Deshmukh, R.V. Deshmukh, and U.J. Chavan, Thin Solid Films 616, 351 (2016).

    Article  Google Scholar 

  9. Y. Sun, L. Ma, B. Zhou, and P. Gao, Int. J. Hydrogen Energy 37, 2336 (2012).

    Article  Google Scholar 

  10. L.J. Zhu, Y.T. Chen, Y.T. Zheng, N.X. Li, J.D. Zhao, and Y.G. Sun, Mater. Lett. 64, 976 (2010).

    Article  Google Scholar 

  11. K.S. Jang and J.D. Kim, Langmuir 25, 6028 (2009).

    Article  Google Scholar 

  12. Y.L. Liu, L. Lei, J.C. Li, and C.X. Pan, J. Phys. Chem. C 111, 5050 (2007).

    Article  Google Scholar 

  13. X. Gou, G. Wang, J. Yang, J. Park, and D. Wexler, J. Mater. Chem. 18, 965 (2008).

    Article  Google Scholar 

  14. A.L. Ortiz and L. Shaw, Acta Mater. 52, 2185 (2004).

    Article  Google Scholar 

  15. M. Salavati-Niasari, N. Mir, and F. Davar, Appl. Surf. Sci. 256, 4003 (2010).

    Article  Google Scholar 

  16. S. Layek and H.C. Verma, J. Nanosci. Nanotechnol. 13, 1848 (2013).

    Article  Google Scholar 

  17. K. Karthik, N. Victor Jaya, M. Kanagaraj, and S. Arumugam, Solid State Commun. 151, 564 (2011).

    Article  Google Scholar 

  18. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, and K. Thavamani, J. Mater. Sci. Mater. Electron. 25, 730 (2014).

    Article  Google Scholar 

  19. R. Sasikala, K. Karthikeyan, D. Easwaramoorthy, I. Mohammed Bilal, and S. Kutti Rani, Environ. Nanotechnol. Monit. Manag. 6, 45 (2016).

    Article  Google Scholar 

  20. W.Z. Wang, Q. Zhou, X.M. Fei, Y.B. He, P.C. Zhang, G.L. Zhang, L. Peng, and W.J. Xie, Cryst. Eng Commun. 12, 2232 (2010).

    Article  Google Scholar 

  21. J.C. Irwin, J. Chrzanowski, T.D. Wei, J. Lockwood, and A. Wold, Physcia C 166, 456 (1990).

    Article  Google Scholar 

  22. W. Wang, L. Wang, H. Shi, and Y. Liang, Cryst. Eng. Commun. 14, 5914 (2012).

    Article  Google Scholar 

  23. M. Parthibavarman, B. Renganathan, and D. Sastikumar, Curr. Appl. Phys. 13, 1537 (2013).

    Article  Google Scholar 

  24. V. Hariharan, S. Radhakrishnan, M. Parthibavarman, R. Dhilipkumar, and C. Sekar, Talanta 85, 2166 (2011).

    Article  Google Scholar 

  25. H. Siddiqui, M.S. Qureshi, and F.Z. Haque, Optik. 127, 3713 (2016).

    Article  Google Scholar 

  26. M.M. Momeni, Z. Nazari, A. Kazempour, M. Hakimiyan, and S.M. Irhoseini, Surf. Eng. 30, 775 (2014).

    Article  Google Scholar 

  27. L. Chen, L. Li, and G. Li, J. Alloys Compd. 464, 532 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Parthibavarman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parthibavarman, M., Sharmila, V., Sathishkumar, P. et al. A Rapid One-Pot Synthesis of CuO Rice-Like Nanostructure and Its Structural, Optical and Electrochemical Performance. J. Electron. Mater. 47, 5443–5451 (2018). https://doi.org/10.1007/s11664-018-6435-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6435-y

Keywords

Navigation