Skip to main content
Log in

Analysis of Carrier Transport in n-Type Hg1−xCdxTe with Ultra-Low Doping Concentration

  • U.S. Workshop on Physics and Chemistry of II-VI Materials 2017
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Mercury cadmium telluride (HgCdTe, or MCT) with low n-type indium doping concentration offers a means for obtaining high performance infrared detectors. Characterizing carrier transport in materials with ultra low doping (ND = 1014 cm−3 and lower), and multi-layer material structures designed for infrared detector devices, is particularly challenging using traditional methods. In this work, Hall effect measurements with a swept B-field were used in conjunction with a multi-carrier fitting procedure and Fourier-domain mobility spectrum analysis to analyze multi-layered MCT samples. Low temperature measurements (77 K) were able to identify multiple carrier species, including an epitaxial layer (x = 0.2195) with n-type carrier concentration of n = 1 × 1014 cm−3 and electron mobility of μ = 280000 cm2/Vs. The extracted electron mobility matches or exceeds prior empirical models for MCT, illustrating the outstanding material quality achievable using current epitaxial growth methods, and motivating further study to revisit previously published material parameters for MCT carrier transport. The high material quality is further demonstrated via observation of the quantum Hall effect at low temperature (5 K and below).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rogalski, Rep. Prog. Phys. 68, 2267 (2005).

    Article  Google Scholar 

  2. M.A. Kinch, J. Electron. Mater. 29, 809 (2000).

    Article  Google Scholar 

  3. D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, D. Edwall, S. Bhargava, M. Zandian, and W.E. Tennant, J. Electron. Mater. 45, 4587 (2016).

    Article  Google Scholar 

  4. T. Ashley, C.T. Elliott, and A.M. White, Infrared Tech. XI 572, 123 (1985).

  5. T. Ashley, C.T. Elliott, and A.T. Harker, Infrared Phys. 26, 303 (1986).

    Article  Google Scholar 

  6. P.Y. Emelie, S. Velicu, C.H. Grein, J.D. Phillips, P.S. Wijewarnasuriya, and N.K. Dhar, J. Electron. Mater. 37, 1362 (2008).

    Article  Google Scholar 

  7. J. Easley, E. Arkun, M. Carmody, and J. Phillips, J. Electron. Mater. 46, 5479 (2017).

    Article  Google Scholar 

  8. J. Wrobel, K. Gorczyca, G.A. Umana-Membreno, A. Kębłowski, J. Boguski, P. Martyniuk, and P. Madejczyk, in Proceedings of SPIE, vol. 10455 (2017), p. 104550T-1.

  9. J. Antoszewski, L. Faraone, I. Vurgaftman, J.R. Meyer, and C.A. Hoffman, J. Electron. Mater. 33, 673 (2004).

    Article  Google Scholar 

  10. J.R. Meyer, C.A. Hoffman, J. Antoszewski, and L. Faraone, J. Appl. Phys. 81, 709 (1997).

    Article  Google Scholar 

  11. W.A. Beck and J.R. Anderson, J. Appl. Phys. 62, 541 (1987).

    Article  Google Scholar 

  12. J. Antoszewski, D.J. Seymour, L. Faraone, J.R. Meyer, and C.A. Hoffman, J. Electron. Mater. 24, 1255 (1995).

    Article  Google Scholar 

  13. I. Vurgaftman, J.R. Meyer, C.A. Hoffman, D. Redfern, J. Antoszewski, L. Faraone, and J.R. Lindemuth, J. Appl. Phys. 84, 4966 (1998).

    Article  Google Scholar 

  14. B. Cui, Y. Tang, and M. Grayson, in Proceedings of SPIE, vol. 9370 (2015), p. 937030.

  15. B. Cui and M. Grayson, In Proceedings of SPIE, vol. 10111 (2017), p. 101110N-1.

  16. J.P. Rosbeck, R.E. Starr, S.L. Price, and K.J. Riley, J. Appl. Phys. 53, 6430 (1982).

    Article  Google Scholar 

  17. M.A. Kinch, Fundamentals of Infrared Detector Materials (Washington: SPIE Press, 2007).

    Book  Google Scholar 

  18. D. Tong, Lectures on the Quantum Hall Effect (2016). arXiv:1606.06687. Accessed 16 July 2018.

Download references

Acknowledgements

The authors would like to thank Professor Lu Li for assistance with the PPMS Dynacool measurement system, Professor Cagliyan Kurdak for assistance with the quantum Hall measurements, and the National Science Foundation Major Research Instrumentation Award No. DMR-1428226 (supporting the equipment for electrical transport characterization). In addition, this work was supported by the Air Force Office of Scientific Research Awards FA9550-15-1-0247 and FA9550-15-1-0377.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Easley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Easley, J., Arkun, E., Cui, B. et al. Analysis of Carrier Transport in n-Type Hg1−xCdxTe with Ultra-Low Doping Concentration. J. Electron. Mater. 47, 5699–5704 (2018). https://doi.org/10.1007/s11664-018-6431-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6431-2

Keywords

Navigation