Skip to main content
Log in

Statistical Analysis of Sputter Parameters on the Properties of ZnO Thin Films Deposited by RF Sputtering

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) thin films were deposited on commercial glass substrates at room temperature by RF magnetron sputtering. The effect of the sputtering variables such as RF power, argon flow and deposition time on the structural, electrical and optical properties was studied and discussed using a full 3k design of experiments. The properties of the deposited films were determined from x-ray diffraction, 3D optical microscopy, four-point probe and UV–Vis spectroscopy measurements. The x-ray diffraction patterns revealed a wurtzite-like crystalline structure of the ZnO films, with preferential orientation along the (002) direction. Depending on deposition parameters, the thickness of the films varied in the range of 23–163 nm and their resistivity was in the range from 100 Ω cm to 105 Ω cm. Additionally, all films show good optical transmittance (higher than 70%) in the visible spectral region and energy band gap values in the range of 2.27–2.31 eV. On the other hand, a multiple linear regression analysis was performed to predict the responses (average thickness, resistivity, and energy band gap) in terms of the significant factors. The results suggest that the time, power-time and flow-time are significant predictors for the thickness model; meanwhile, flow, flow2, power-flow, and power-time are significant for the resistivity model. In the energy band gap model, power, flow, time and flow2 were significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Adachi, Properties of Group-IV, III–V II–VI Semiconductors (Hoboken: Wiley, 2005), p. 11.

    Google Scholar 

  2. M. Hadis and O. Umit, Zinc Oxide Fundam. Materials and Device Technology (Hoboken: Wiley, 2009), p. 1.

    Google Scholar 

  3. R. Kumar, G. Kumar, O. Al-Dossary, and A. Umar, Mater. Express (2015). https://doi.org/10.1166/mex.2015.1204.

    Google Scholar 

  4. M.I. Medina-Montes, S.H. Lee, M. Pérez, L.A. Baldenegro-Pérez, M.A. Quevedo-López, B. Gnade, and R. Ramírez-Bon, J. Electron. Mater. (2011). https://doi.org/10.1007/s11664-011-1608-y.

    Google Scholar 

  5. M.I. Medina-Montes, H. Arizpe-Chávez, L.A. Baldenegro-Pérez, M.A. Quevedo-López, and R. Ramírez-Bon, J. Electron. Mater. (2012). https://doi.org/10.1007/s11664-012-1994-9.

    Google Scholar 

  6. R. Singh, M. Kumar, and S. Chandra, J. Mater. Sci. (2007). https://doi.org/10.1007/s10853-006-0372-5.

    Google Scholar 

  7. P.B. Taunk, R. Das, D.P. Bisen, R.K. Tamrakar, and N. Rathor, Int. J. Mod. Sci. (2015). https://doi.org/10.1016/j.kijoms.2015.11.002.

    Google Scholar 

  8. E. Heredia, C. Bojorge, J. Casanova, H. Cánepa, A. Craievich, and G. Kellermann, Appl. Surf. Sci. (2014). https://doi.org/10.1016/j.apsusc.2014.08.046.

    Google Scholar 

  9. H. Belkhalfa, H. Ayed, A. Hafdallah, M.S. Aida, and R.T. Ighil, Optik (Stuttg) (2016). https://doi.org/10.1016/j.ijleo.2015.11.126.

    Google Scholar 

  10. R. Kumar, G. Kumar, and O. Al-Dossary, Mater. Express A 5, 3 (2015).

    Article  Google Scholar 

  11. N.E. Duygulu, A.O. Kodolbas, and A. Ekerim, J. Cryst. Growth (2014). https://doi.org/10.1016/j.jcrysgro.2014.02.028.

    Google Scholar 

  12. L. Gao, S. Jiang, and R. Li, Thin Solid Films (2016). https://doi.org/10.1016/j.tsf.2016.02.059.

    Google Scholar 

  13. Y. Zhao, D. Jiang, M. Zhao, R. Deng, J. Qin, and S. Gao, Appl. Surf. Sci. (2013). https://doi.org/10.1016/j.apsusc.2012.12.055.

    Google Scholar 

  14. A. Spadoni and M.L. Addonizio, Thin Solid Films (2015). https://doi.org/10.1016/j.tsf.2015.06.035.

    Google Scholar 

  15. H.Y. Dai, C. Zhan, and J. Du, Optik (Stuttg) (2016). https://doi.org/10.1016/j.ijleo.2015.11.154.

    Google Scholar 

  16. Y. Lu and J. Jia, Chin. Chem. Lett. (2014). https://doi.org/10.1016/j.cclet.2014.06.003.

    Google Scholar 

  17. J. Liu, A. Wei, and Y. Zhao, J. Alloys Compd. (2014). https://doi.org/10.1016/j.jallcom.2013.11.042.

    Google Scholar 

  18. F. Gode, E. Guneri, and O. Baglayan, Appl. Surf. Sci. (2014). https://doi.org/10.1016/j.apsusc.2014.04.128.

    Google Scholar 

  19. D.C. Montgomery, Design and Analysis of Experiments (Hoboken: Wiley, 2013), p. 2013.

    Google Scholar 

  20. L. Sun, S. Wan, Z. Yu, and L. Wang, Sep. Purif. Technol. (2014). https://doi.org/10.1016/j.seppur.2014.01.042.

    Google Scholar 

  21. M. Cuéllar, V. Pfaffen, and P.I. Ortiz, J. Electroanal. Chem. (2015). https://doi.org/10.1016/j.jelechem.2015.07.050.

    Google Scholar 

  22. N. Ozbay and A.S. Yargic, J. Clean. Prod. (2015). https://doi.org/10.1016/j.jclepro.2015.03.050.

    Google Scholar 

  23. E. Yucel, Y. Yucel, and B. Ibrahim, J. Mater. Sci. (2012). https://doi.org/10.1007/s10854-012-0791-9.

    Google Scholar 

  24. K. Do Kim, D.W. Choi, Y. Choa, and H.T. Kim, J. Mater. Process. Technol. (2007). https://doi.org/10.1016/j.jmatprotec.2007.09.053.

    Google Scholar 

  25. Y. Tao, M.M. Ba-abbad, A. Wahab, N. Hanis, H. Hairom, and A. Benamor, Mater. Des. (2015). https://doi.org/10.1016/j.matdes.2015.07.040.

    Google Scholar 

  26. A. Cuevas, R. Romero, D. Leinen, E.A. Dalchiele, J.R. Ramos-Barrado, and F. Martin, Sol. Energy Mater. Sol. Cells (2015). https://doi.org/10.1016/j.solmat.2014.11.048.

    Google Scholar 

  27. E. Yücel, N. Güler, and Y. Yücel, J. Alloys Compd. (2014). https://doi.org/10.1016/j.jallcom.2013.11.067.

    Google Scholar 

  28. E. Yücel, Y. Yücel, and B. Beleli, J. Cryst. Growth (2015). https://doi.org/10.1016/j.jcrysgro.2015.04.018.

    Google Scholar 

  29. E. Yücel, Y. Yücel, and B. Beleli, J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.03.267.

    Google Scholar 

  30. C.L. Tien and S.W. Lin, Opt. Commun. (2006). https://doi.org/10.1016/j.optcom.2006.05.044.

    Google Scholar 

  31. C. Peng, T.P. Dhakal, S.M. Garner, S. Member, P. Cimo, S. Lu, and C.R. Westgate, Trans. Device Mater. Reliab. A 14, 121 (2014).

    Article  Google Scholar 

  32. S. Hsu, M. Weng, R. Yang, C. Fang, and J. Chou, IEEE Trans. Autom. Sci. Eng. (2016). https://doi.org/10.1109/TASE.2016.2572223.

    Google Scholar 

  33. Y. Lare, A. Godoy, L. Cattin, K. Jondo, T. Abachi, F.R. Diaz, M. Morsli, K. Napo, M.A. Valle, and J.C. Berne, Appl. Surf. Sci. (2009). https://doi.org/10.1016/j.apsusc.2009.02.054.

    Google Scholar 

  34. A. Purohit, S. Chander, A. Sharma, S.P. Nehra, and M.S. Dhaka, Opt. Mater. (Amst) (2015). https://doi.org/10.1016/j.optmat.2015.08.021.

    Google Scholar 

  35. S. Sharma, C. Periasamy, and P. Chakrabarti, Electron. Mater. Lett. (2015). https://doi.org/10.1007/s13391-015-4445-y.

    Google Scholar 

  36. X.L. Zhang, K.N. Hui, K.S. Hui, and J. Singh, Mater. Res. Bull. (2013). https://doi.org/10.1016/j.materresbull.2012.11.104.

    Google Scholar 

  37. S. Elmas, S. Özen, N. Ekem, and M.Z. Balba, Appl. Surf. Sci. (2014). https://doi.org/10.1016/j.apsusc.2013.10.044.

    Google Scholar 

  38. A. Mortezaali, O. Taheri, and Z.S. Hosseini, MEE (2016). https://doi.org/10.1016/j.mee.2015.11.016.

    Google Scholar 

  39. S. Sharma, S. Vyas, C. Periasamy, and P. Chakrabarti, Superlattices Microstruct. (2014). https://doi.org/10.1016/j.spmi.2014.07.032.

    Google Scholar 

  40. A. Ismail and M.J. Abdullah, J. King Saud Univ. Sci. (2013). https://doi.org/10.1016/j.jksus.2012.12.004.

    Google Scholar 

  41. J.J. Valenzuela-Jáuregui, R. Ramírez-Bon, A. Mendoza-Galván, and M. Sotelo-Lerma, Thin Solid Films (2003). https://doi.org/10.1016/S0040-6090(03)00908-8.

    Google Scholar 

  42. M.D. Morales-acosta, C.G. Alvarado-beltrán, M.A. Quevedo-lópez, and B.E. Gnade, J. Non Cryst. Solids (2013). https://doi.org/10.1016/j.jnoncrysol.2012.11.025.

    Google Scholar 

  43. C. Trejo-cruz, A. Mendoza-galván, A.M. López-beltrán, and M. Gracia-jiménez, Thin Solid Films (2009). https://doi.org/10.1016/j.tsf.2009.02.134.

    Google Scholar 

  44. A. Cuevas, R. Romero, D. Leinen, E.A. Dalchiele, J.R. Ramos-barrado, and F. Martin, Sol. Energy Mater. Sol. Cells (2015). https://doi.org/10.1016/j.solmat.2014.11.048.

    Google Scholar 

  45. C. Besleaga, G.E. Stan, A.C. Galca, L. Ion, and S. Antohe, Appl. Surf. Sci. (2012). https://doi.org/10.1016/j.apsusc.2012.05.097.

    Google Scholar 

  46. J. Hair, R.E. Anderson, and R.L. Tatham, Multivarate Data Analysis (Prentice Hall international: Upper Saddle River, 1999), p. 143.

    Google Scholar 

  47. D.C. Montgomery, E.A. Peck, and G.G. Vining, Introduction to Linear Regression Analysis (Hoboken: Wiley, 2012), p. 171.

    Google Scholar 

Download references

Acknowledgements

The technical assistance of C.A. Ávila-Herrera and M.A. Hernández-Landaverde, the use of LIDTRA facilities and the support of CONACYT-Mexico (Project Number 242549) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ramírez-Bon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores-García, E., González-García, P., González-Hernández, . et al. Statistical Analysis of Sputter Parameters on the Properties of ZnO Thin Films Deposited by RF Sputtering. J. Electron. Mater. 47, 5537–5547 (2018). https://doi.org/10.1007/s11664-018-6422-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6422-3

Keywords

Navigation