Skip to main content

Advertisement

Log in

Effect of CdTe Back Surface Field on the Efficiency Enhancement of a CGS Based Thin Film Solar Cell

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Numerical analysis of the proposed solar cell is based on cadmium telluride (CdTe) and copper gallium sulfide (CuGaS2), also known as CGS, is proposed in this research work. Performance of a CdTe/CGS/CdS/ZnO cell is analyzed in Solar Cell Capacitance Simulator (SCAPS) software, by changing the physical parameters like doping density of acceptor, doping density of donor, absorber thickness and buffer thickness. The cell structure is in the same order as the CGS/CdS/ZnO with CdTe used for the back surface field layer. Power conversion efficiency of the CGS/CdS/ZnO solar cell without CdTe is 10.578% (with FF = 83.70%, Voc = 0.82 V, Jsc = 15.40 mA/cm2) and conversion efficiency of CdTe/CGS/CdS/ZnO is 28.20% (with FF = 77.66%, Voc = 1.22 V, Jsc = 29.63 mA/cm3). The overall investigation and simulation results from the modeling of a proposed device in SCAPS is very useful for the understanding of the fundamentals of photovoltaic devices and gives feedback to engineers and designers for the fabrication of CdTe/CGS based solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.H. Khattak, T. Mahmood, K. Alam, T. Sarwar, I. Ullah, and H. Ullah, Am. J. Electr. Power Energy Syst. (2014). https://doi.org/10.11648/j.epes.20140305.11.

    Google Scholar 

  2. I. Rimmaudo, A. Salavei, and A. Romeo, Thin Solid Films (2013). https://doi.org/10.1016/j.tsf.2012.11.113.

    Google Scholar 

  3. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, Prog. Photovolt. Res. Appl. (2015). https://doi.org/10.1002/pip.2573.

    Google Scholar 

  4. M. Elbar, S. Tobbeche, and A. Merazga, Sol. Energy (2015). https://doi.org/10.1016/j.solener.2015.08.029.

    Google Scholar 

  5. J.D. Major, R. Tena-Zaera, E. Azaceta, L. Bowen, and K. Durose, Sol. Energy Mater. Sol. Cells (2017). https://doi.org/10.1016/j.solmat.2016.10.024.

    Google Scholar 

  6. E.S. Cha, Y.M. Ko, S.C. Kim, and B.T. Ahn, Curr. Appl. Phys. (2017). https://doi.org/10.1016/j.cap.2016.10.014.

    Google Scholar 

  7. R.W. Crisp, G.F. Pach, J.M. Kurley, R.M. France, M.O. Reese, S.U. Nanayakkara, B.A. Macleod, D.V. Talapin, M.C. Beard, and J.M. Luther, Nano Lett. (2017). https://doi.org/10.1021/acs.nanolett.6b04423.

    Google Scholar 

  8. Y. Chen, X. Tan, S. Peng, C. Xin, A.E. Delahoy, K.K. Chin, and C. Zhang, J. Electron. Mater. (2018). https://doi.org/10.1007/s11664-017-5850-9.

    Google Scholar 

  9. P.Y. Su, C. Lee, G.C. Wang, T.M. Lu, and I.B. Bhat, J. Electron. Mater. (2014). https://doi.org/10.1007/s11664-014-3142-1.

    Google Scholar 

  10. S. Wang, T. Nazuka, H. Hagiya, Y. Takabayashi, S. Ishizuka, H. Shibata, S. Niki, M.M. Islam, K. Akimoto, and T. Sakurai, J. Electron. Mater. (2018). https://doi.org/10.1007/s11664-018-6120-1.

    Google Scholar 

  11. A. Romeo, M. Terheggen, D. Abou-Ras, D.L. Bätzner, F.-J. Haug, M. Kälin, D. Rudmann, and A.N. Tiwari, Prog. Photovolt. Res. Appl. (2004). https://doi.org/10.1002/pip.527.

    Google Scholar 

  12. S. Ullah, M. Mollar, and B. Marí, J. Solid State Electrochem. (2016). https://doi.org/10.1007/s10008-016-3237-0.

    Google Scholar 

  13. X. Peng, M. Zhao, D. Zhuang, L. Guo, L. Ouyang, R. Sun, L. Zhang, Y. Wei, S. Zhan, X. Lv, Y. Wu, and G. Ren, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.02.016.

    Google Scholar 

  14. M. Mazzer, S. Rampino, G. Spaggiari, F. Annoni, D. Bersani, F. Bissoli, M. Bronzoni, M. Calicchio, E. Gombia, A. Kingma, F. Pattini, and E. Gilioli, Sol. Energy Mater. Sol. Cells (2017). https://doi.org/10.1016/j.solmat.2016.10.048.

    Google Scholar 

  15. A. Gerthoffer, C. Poulain, F. Roux, F. Emieux, L. Grenet, and S. Perraud, Sol. Energy Mater. Sol. Cells (2017). https://doi.org/10.1016/j.solmat.2016.11.022.

    Google Scholar 

  16. X. Wu, Sol. Energy (2004). https://doi.org/10.1016/j.solener.2004.06.006.

    Google Scholar 

  17. K. Ramanathan, M.A. Contreras, C.L. Perkins, S. Asher, F.S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, Prog. Photovolt. Res. Appl. (2013). https://doi.org/10.1002/pip.494.

    Google Scholar 

  18. M. Mezher, R. Garris, L.M. Mansfield, K. Horsley, L. Weinhardt, D.A. Duncan, M. Blum, S.G. Rosenberg, M. Bär, K. Ramanathan, and C. Heske, Prog. Photovolt. Res. Appl. (2016). https://doi.org/10.1002/pip.2764.

    Google Scholar 

  19. W. Wang, J. Yang, X. Zhu, and J. Phillips, Front. Optoelectron. China (2011). https://doi.org/10.1007/s12200-011-0151-z.

    Google Scholar 

  20. W. Shockley and H.J. Queisser, J. Appl. Phys. (1961). https://doi.org/10.1063/1.1736034.

    Google Scholar 

  21. S. Ullah, H. Ullah, F. Bouhjar, M. Mollar, and B. Marí, Sol. Energy Mater. Sol. Cells (2017). https://doi.org/10.1016/j.solmat.2017.06.062.

    Google Scholar 

  22. O.D. Miller, E. Yablonovitch, and S.R. Kurtz, IEEE J. Photovolt. (2012). https://doi.org/10.1109/JPHOTOV.2012.2198434.

    Google Scholar 

  23. Y.H. Khattak, F. Baig, H. Toura, S. Ullah, B. Marí, S. Beg, and H. Ullah, Curr. Appl. Phys. (2018). https://doi.org/10.1016/j.cap.2018.03.013.

    Google Scholar 

  24. F. Baig, H. Ullah, Y.H. Khattak, and B. Mari Soucase, Int. Renew. Sustain. Energy Conf. IEEE. (2016). https://doi.org/10.1109/irsec.2016.7983899.

    Google Scholar 

  25. Y.H. Khattak, F. Baig, S. Ullah, B. Marí, S. Beg, and H. Ullah, Optik (Stuttg) (2018). https://doi.org/10.1016/j.ijleo.2018.03.055.

    Google Scholar 

  26. N. Khoshsirat and N.A. Md, Yunus. J. Electron. Mater. (2016). https://doi.org/10.1007/s11664-016-4744-6.

    Google Scholar 

  27. A. Chihi, M.F. Boujmil, and B. Bessais, J. Electron. Mater. (2017). https://doi.org/10.1007/s11664-017-5547-0.

    Google Scholar 

  28. P.Y. Su, R. Dahal, G.C. Wang, S. Zhang, T.M. Lu, and I.B. Bhat, J. Electron. Mater. (2015). https://doi.org/10.1007/s11664-015-3829-y.

    Google Scholar 

  29. A. Niemegeers and M. Burgelman, Conf. Rec. Twenty Fifth IEEE Photovolt. Spec. Conf. (1996). https://doi.org/10.1109/pvsc.1996.564274.

    Google Scholar 

  30. K. Decock, P. Zabierowski, and M. Burgelman, J. Appl. Phys. (2012). https://doi.org/10.1063/1.3686651.

    Google Scholar 

  31. V. Barrioz, Y.Y. Proskuryakov, E.W. Jones, J.D. Major, S.J.C. Irvine, K. Durose, and D.A. Lamb, MRS Proc. (2007). https://doi.org/10.1557/PROC-1012-Y12-08.

    Google Scholar 

  32. S. Oehling, H.J. Lugauer, M. Schmitt, H. Heinke, U. Zehnder, A. Waag, C.R. Becker, and G. Landwehr, J. Appl. Phys. (1996). https://doi.org/10.1063/1.361160.

    Google Scholar 

  33. M.S. Hossain, N. Amin, M.A. Matin, M.M. Aliyu, T. Razykov, and K. Sopian, Chalcogenide Lett. 8 (4), 263 (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousaf Hameed Khattak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khattak, Y.H., Baig, F., Marí, B. et al. Effect of CdTe Back Surface Field on the Efficiency Enhancement of a CGS Based Thin Film Solar Cell. J. Electron. Mater. 47, 5183–5190 (2018). https://doi.org/10.1007/s11664-018-6405-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6405-4

Keywords

Navigation