Skip to main content
Log in

Effect of Shock Waves on Dielectric Properties of KDP Crystal

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An alternative non-destructive approach is proposed and demonstrated for modifying electrical properties of crystal using shock-waves. The method alters dielectric properties of a potassium dihydrogen phosphate (KDP) crystal by loading shock-waves generated by a table-top shock tube. The experiment involves launching the shock-waves perpendicular to the (100) plane of the crystal using a pressure driven table-top shock tube with Mach number 1.9. Electrical properties of dielectric constant, dielectric loss, permittivity, impedance, AC conductivity, DC conductivity and capacitance as a function of spectrum of frequency from 1 Hz to 1 MHz are reported for both pre- and post-shock wave loaded conditions of the KDP crystal. The experimental results reveal that dielectric constant of KDP crystal is sensitive to the shock waves such that the value decreases for the shock-loaded KDP sample from 158 to 147. The advantage of the proposed approach is that it is an alternative to the conventional doping process for tailoring dielectric properties of this type of crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. Hazen and L.W. Finger, Rev. Sci. Instrum. 52, 75 (1981).

    Article  Google Scholar 

  2. E.V. Boldyreva, N. Ivashevskaya, H. Sowa, H. Ahsbahs, and H.-P. Weber, Z. Kristallogr. 220, 50 (2005).

    Google Scholar 

  3. E.V. Boldyreva, S.N. Ivashevskaya, H. Sowa, H. Ahsbahs, and H.P. Weber, Dokl. Phys. Chem. 396, 111 (2004).

    Article  Google Scholar 

  4. V.S. Shusta, I.P. Prits, P.P. Guranich, E.I. Gerzanich, and A.G. Silvika, Condens. Mater. Phys. 10, 91 (2007).

    Article  Google Scholar 

  5. J. Suchanicz and K. Wojcik, Mater. Sci. Eng. B 104, 31 (2003).

    Article  Google Scholar 

  6. V.M. Kedyulich, A.G. Silvika, E.I. Gerzanich, A.M. Guivan, and P.M. Lukach, Condens. Mater. Phys. 6, 271 (2003).

    Article  Google Scholar 

  7. I.V. Stasyuk, R.R. Levitskii, and A.P. Monia, Condens. Mater. Phys. 2, 731 (1999).

    Article  Google Scholar 

  8. A.A. Charakhchyana, V.V. Milyavskiib, and K.V. Khishchenko, High Temp. 47, 235 (2009).

    Article  Google Scholar 

  9. G.I. Kanel, V.E. Fortov, and S.V. Razorenov, Phys. Uspekhi. 50, 771 (2007).

    Article  Google Scholar 

  10. J. Zhang and P.S. Branicio, Procedia Eng. 75, 150 (2014).

    Article  Google Scholar 

  11. V.A. Gnatyuk, T. Aoki, and Y. Hatanaka, Appl. Phys. Lett. 88, 242111 (2006).

    Article  Google Scholar 

  12. S.-N. Luo, T.C. Germann, D.L. Tonks, and Q. An, J. Appl. Phys. 108, 093526 (2010).

    Article  Google Scholar 

  13. D.E. Hooks, K.J. Ramos, and A. Richard, J. Appl. Phys. 100, 024908 (2006).

    Article  Google Scholar 

  14. F. Mullar and E. Schulte, Z. Naturforsch. 33, 918 (1978).

    Google Scholar 

  15. Z.A. Derger, Y.A. Gruzdkov, Y.M. Gupta, and J.J. Dick, J. Phys. Chem. B 106, 247 (2002).

    Article  Google Scholar 

  16. P.A. Urtiew, J. Appl. Phys. 45, 3490 (1974).

    Article  Google Scholar 

  17. S.T. Weir, A.C. Mitchell, and W.J. Nellis, J. Appl. Phys. 80, 1522 (1996).

    Article  Google Scholar 

  18. K. Kadau, T.C. Germann, P. Lomdahl, and B.L. Holian, Science 296, 1681 (2002).

    Article  Google Scholar 

  19. K. Kadau, T.C. Germann, P.S. Lomdahl, R.C. Albers, J.S. Wark, A. Higginbotham, and B.L. Holian, Phys. Rev. Lett. 98, 135701 (2007).

    Article  Google Scholar 

  20. B.P. Chandra, S. Parganiha, V.D. Sonwane, V.K. Chandra, P. Jha, and R.N. Baghe, J. Lumin. 178, 196 (2016).

    Article  Google Scholar 

  21. S. Goma, C.M. Padma, and C.K. Mahadevan, Mater. Lett. 60, 3701 (2006).

    Article  Google Scholar 

  22. S. Balamurugan and P. Ramasamy, Spectrochim. Acta Part A 71, 1979 (2009).

    Article  Google Scholar 

  23. N. Pattanaboonmee, P. Ramasamy, and P. Manyum, Procedia Eng. 32, 1019 (2012).

    Article  Google Scholar 

  24. S. Chandran, R. Paulraj, and P. Ramasamy, Mater. Res. Bull. 68, 210 (2015).

    Article  Google Scholar 

  25. A. Majumder and Z.K. Nagy, Chem. Eng. Sci. 101, 593 (2013).

    Article  Google Scholar 

  26. L. Zhang, Y. Wu, Y. Liu, and H. Li, RSC Adv. 7, 26170 (2017).

    Article  Google Scholar 

  27. K.P.J. Reddy and N. Sharath, Curr. Sci. 104, 172 (2013).

    Google Scholar 

  28. K. Boopathi and P. Ramasamy, Opt. Mater. 37, 629 (2014).

    Article  Google Scholar 

  29. M. Shkir, B. Riscob, M.A. Khan, S. AlFaify, E. Dieguez, and G. Bhagavannarayana, Spectrochim. Acta A 124, 571 (2014).

    Article  Google Scholar 

  30. M. Manivannan, S.A. Martin Britto Dhas, and M. Jose, J. Cryst. Growth 455, 161 (2016).

    Article  Google Scholar 

  31. P. Rajesh, A. Silambarasan, and P. Ramasamy, Mater. Res. Bull. 49, 640 (2014).

    Article  Google Scholar 

  32. S. Mayburg, Phys. Rev. 79, 375 (1950).

    Article  Google Scholar 

  33. H. Yurtseven and S. Sen, Adv. Condens. Mater. Phys. 2012, 1 (2012).

    Google Scholar 

  34. R. Yimnirun, S. Ananta, E. Meechoowas, and S. Wonsaennmai, J. Phys. D Appl. Phys. 36, 1615 (2003).

    Article  Google Scholar 

  35. R. Yimnirun, S. Wongsaenmai, A. Ngamjarurojana, and S. Ananta, Curr. Appl. Phys. 6, 520 (2006).

    Article  Google Scholar 

  36. D. Shamiryan, T. Abell, F. Iacopi, and K. Maex, Mater. Today 7, 34 (2004).

    Article  Google Scholar 

  37. R.H. Chen, C.-C. Yen, C.S. Shern, and T. Fukami, Solid State Ion. 177, 2857 (2006).

    Article  Google Scholar 

  38. M. Pandey, G.M. Joshi, K. Deshumkh, and J. Ahamd, Adv. Mater. Lett. 6, 165 (2015).

    Article  Google Scholar 

  39. M.H. Khan and S. Pal, Adv. Mater. Lett 5, 384 (2014).

    Article  Google Scholar 

  40. A. Goddat, J. Peyronneau, and J.P. Poirier, Phys. Chem. Miner. 27, 81 (1999).

    Article  Google Scholar 

  41. Z.M. Elimat, J. Compos. Mater. 49, 1 (2013).

  42. E. Matsushita, Solid State Ion. 145, 445 (2001).

    Article  Google Scholar 

  43. S. Goel, N. Sinha, H. Yadav, A.J. Joseph, A. Hussain, and B. Kumar, Arab. J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2017.03.003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Martin Britto Dhas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, A., Suresh, S., Pradeep, J.A. et al. Effect of Shock Waves on Dielectric Properties of KDP Crystal. J. Electron. Mater. 47, 4831–4839 (2018). https://doi.org/10.1007/s11664-018-6362-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6362-y

Keywords

Navigation