Abstract
An alternative non-destructive approach is proposed and demonstrated for modifying electrical properties of crystal using shock-waves. The method alters dielectric properties of a potassium dihydrogen phosphate (KDP) crystal by loading shock-waves generated by a table-top shock tube. The experiment involves launching the shock-waves perpendicular to the (100) plane of the crystal using a pressure driven table-top shock tube with Mach number 1.9. Electrical properties of dielectric constant, dielectric loss, permittivity, impedance, AC conductivity, DC conductivity and capacitance as a function of spectrum of frequency from 1 Hz to 1 MHz are reported for both pre- and post-shock wave loaded conditions of the KDP crystal. The experimental results reveal that dielectric constant of KDP crystal is sensitive to the shock waves such that the value decreases for the shock-loaded KDP sample from 158 to 147. The advantage of the proposed approach is that it is an alternative to the conventional doping process for tailoring dielectric properties of this type of crystal.
Similar content being viewed by others
References
R.M. Hazen and L.W. Finger, Rev. Sci. Instrum. 52, 75 (1981).
E.V. Boldyreva, N. Ivashevskaya, H. Sowa, H. Ahsbahs, and H.-P. Weber, Z. Kristallogr. 220, 50 (2005).
E.V. Boldyreva, S.N. Ivashevskaya, H. Sowa, H. Ahsbahs, and H.P. Weber, Dokl. Phys. Chem. 396, 111 (2004).
V.S. Shusta, I.P. Prits, P.P. Guranich, E.I. Gerzanich, and A.G. Silvika, Condens. Mater. Phys. 10, 91 (2007).
J. Suchanicz and K. Wojcik, Mater. Sci. Eng. B 104, 31 (2003).
V.M. Kedyulich, A.G. Silvika, E.I. Gerzanich, A.M. Guivan, and P.M. Lukach, Condens. Mater. Phys. 6, 271 (2003).
I.V. Stasyuk, R.R. Levitskii, and A.P. Monia, Condens. Mater. Phys. 2, 731 (1999).
A.A. Charakhchyana, V.V. Milyavskiib, and K.V. Khishchenko, High Temp. 47, 235 (2009).
G.I. Kanel, V.E. Fortov, and S.V. Razorenov, Phys. Uspekhi. 50, 771 (2007).
J. Zhang and P.S. Branicio, Procedia Eng. 75, 150 (2014).
V.A. Gnatyuk, T. Aoki, and Y. Hatanaka, Appl. Phys. Lett. 88, 242111 (2006).
S.-N. Luo, T.C. Germann, D.L. Tonks, and Q. An, J. Appl. Phys. 108, 093526 (2010).
D.E. Hooks, K.J. Ramos, and A. Richard, J. Appl. Phys. 100, 024908 (2006).
F. Mullar and E. Schulte, Z. Naturforsch. 33, 918 (1978).
Z.A. Derger, Y.A. Gruzdkov, Y.M. Gupta, and J.J. Dick, J. Phys. Chem. B 106, 247 (2002).
P.A. Urtiew, J. Appl. Phys. 45, 3490 (1974).
S.T. Weir, A.C. Mitchell, and W.J. Nellis, J. Appl. Phys. 80, 1522 (1996).
K. Kadau, T.C. Germann, P. Lomdahl, and B.L. Holian, Science 296, 1681 (2002).
K. Kadau, T.C. Germann, P.S. Lomdahl, R.C. Albers, J.S. Wark, A. Higginbotham, and B.L. Holian, Phys. Rev. Lett. 98, 135701 (2007).
B.P. Chandra, S. Parganiha, V.D. Sonwane, V.K. Chandra, P. Jha, and R.N. Baghe, J. Lumin. 178, 196 (2016).
S. Goma, C.M. Padma, and C.K. Mahadevan, Mater. Lett. 60, 3701 (2006).
S. Balamurugan and P. Ramasamy, Spectrochim. Acta Part A 71, 1979 (2009).
N. Pattanaboonmee, P. Ramasamy, and P. Manyum, Procedia Eng. 32, 1019 (2012).
S. Chandran, R. Paulraj, and P. Ramasamy, Mater. Res. Bull. 68, 210 (2015).
A. Majumder and Z.K. Nagy, Chem. Eng. Sci. 101, 593 (2013).
L. Zhang, Y. Wu, Y. Liu, and H. Li, RSC Adv. 7, 26170 (2017).
K.P.J. Reddy and N. Sharath, Curr. Sci. 104, 172 (2013).
K. Boopathi and P. Ramasamy, Opt. Mater. 37, 629 (2014).
M. Shkir, B. Riscob, M.A. Khan, S. AlFaify, E. Dieguez, and G. Bhagavannarayana, Spectrochim. Acta A 124, 571 (2014).
M. Manivannan, S.A. Martin Britto Dhas, and M. Jose, J. Cryst. Growth 455, 161 (2016).
P. Rajesh, A. Silambarasan, and P. Ramasamy, Mater. Res. Bull. 49, 640 (2014).
S. Mayburg, Phys. Rev. 79, 375 (1950).
H. Yurtseven and S. Sen, Adv. Condens. Mater. Phys. 2012, 1 (2012).
R. Yimnirun, S. Ananta, E. Meechoowas, and S. Wonsaennmai, J. Phys. D Appl. Phys. 36, 1615 (2003).
R. Yimnirun, S. Wongsaenmai, A. Ngamjarurojana, and S. Ananta, Curr. Appl. Phys. 6, 520 (2006).
D. Shamiryan, T. Abell, F. Iacopi, and K. Maex, Mater. Today 7, 34 (2004).
R.H. Chen, C.-C. Yen, C.S. Shern, and T. Fukami, Solid State Ion. 177, 2857 (2006).
M. Pandey, G.M. Joshi, K. Deshumkh, and J. Ahamd, Adv. Mater. Lett. 6, 165 (2015).
M.H. Khan and S. Pal, Adv. Mater. Lett 5, 384 (2014).
A. Goddat, J. Peyronneau, and J.P. Poirier, Phys. Chem. Miner. 27, 81 (1999).
Z.M. Elimat, J. Compos. Mater. 49, 1 (2013).
E. Matsushita, Solid State Ion. 145, 445 (2001).
S. Goel, N. Sinha, H. Yadav, A.J. Joseph, A. Hussain, and B. Kumar, Arab. J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2017.03.003.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sivakumar, A., Suresh, S., Pradeep, J.A. et al. Effect of Shock Waves on Dielectric Properties of KDP Crystal. J. Electron. Mater. 47, 4831–4839 (2018). https://doi.org/10.1007/s11664-018-6362-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-018-6362-y