Journal of Electronic Materials

, Volume 47, Issue 8, pp 4493–4501 | Cite as

Lithium Battery Transient Response as a Diagnostic Tool

  • E. DenisovEmail author
  • R. Nigmatullin
  • Y. Evdokimov
  • G. Timergalina
Topical Collection: Electronic Materials for Renewable Energy Applications
Part of the following topical collections:
  1. 5th European Conference on Renewable Energy Systems


Lithium batteries are currently used as the main energy storage for electronic devices. Progress in the field of portable electronic devices is significantly determined by the improvement of their weight/dimensional characteristics and specific capacity. In addition to the high reliability required of lithium batteries, in some critical applications proper diagnostics are required. Corresponding techniques allow prediction and prevention of operation interruption and avoidance of expensive battery replacement, and also provide additional benefits. Many effective diagnostic methods have been suggested; however, most of them require expensive experimental equipment, as well as interruption or strong perturbation of the operating mode. In the framework of this investigation, a simple diagnostic method based on analysis of transient processes is proposed. The transient response is considered as a reaction to an applied load variation that typically corresponds to normal operating conditions for most real applications. The transient response contains the same information as the impedance characteristic for the system operating in linear mode. Taking into account the large number of publications describing the impedance response associated with diagnostic methods, it can be assumed that the transient response contains a sufficient amount of information for creation of effective diagnostic systems. The proposed experimental installation is based on a controlled load, providing current variation, measuring equipment, and data processing electronics. It is proposed to use the second exponent parameters U2 and β to estimate the state of charge for secondary lithium batteries. The proposed method improves the accuracy and reliability of a set of quantitative parameters associated with electrochemical energy sources.


Lithium battery diagnostics time response linear mode time analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, J. Power Sources 226, 272 (2013).CrossRefGoogle Scholar
  2. 2.
    K. Buss, P. Wrobel, and Ch. Doetsch, Int. J. Sustain. Energy Plan. Manag. 9, 31 (2016).Google Scholar
  3. 3.
    H. He, X. Zhang, R. Xiong, Y. Xu, and H. Guo, Energy 39, 310 (2012).CrossRefGoogle Scholar
  4. 4.
    L. Sanier, R. Bouchet, M. Rosso, and J.-M. Tarascon, J. Power Sources 158, 564 (2006).CrossRefGoogle Scholar
  5. 5.
    Ch. Lin, A. Tanga, and W. Wang, Energy Procedia 75, 1920 (2015).CrossRefGoogle Scholar
  6. 6.
    S. Martemianov, N. Adiutanov, Yu.K. Evdokimov, L. Madier, F. Maillard, and A. Thomas, J. Solid State Electrochem. 19, 2803 (2015).CrossRefGoogle Scholar
  7. 7.
    E.S. Denisov, Yu.K. Evdokimov, S. Martemianov, A. Thomas, and N. Adiutantov, Fuel Cells 17, 225 (2017).CrossRefGoogle Scholar
  8. 8.
    M.A. Rubio, K. Bethune, A. Urquia, and J. St-Pierre, Int. J. Hydrogen Energy 41, 14991 (2016).CrossRefGoogle Scholar
  9. 9.
    Yu.K. Evdokimov and E. Denisov, Proc. SPIE 8787, 87870E (2013).CrossRefGoogle Scholar
  10. 10.
    Yu.K. Evdokimov, E. Denisov, and S. Martemianov, Nonlinear World 7, 706 (2009).Google Scholar
  11. 11.
    X. Yuan, H. Wang, J.C. Sun, and J. Zhang, Int. J. Hydrogen Energy 32, 4365 (2007).CrossRefGoogle Scholar
  12. 12.
    E.S. Denisov, Nonlinear World 6, 483 (2008).Google Scholar
  13. 13.
    E.-M. Hammer, B. Berger, and L. Komsiyska, Int. J. Renew. Energy Dev. 3, 7 (2014).Google Scholar
  14. 14.
    K.R. Cooper and M. Smith, J. Power Sources 160, 1088 (2006).CrossRefGoogle Scholar
  15. 15.
    P. Boskoski, A. Debenjak, and B.M. Boshkoska, Fast Electrochemical Impedance Spectroscopy as a Statistical Condition Monitoring Tool (SpringerBriefs in Applied Sciences and Technology) (New York: Springer, 2017), p. 83.CrossRefGoogle Scholar
  16. 16.
    G. Timergalina, T. Nikishin, E.S. Denisov, and R.R. Nigmatullin, in Systems of Signal Synchronization, Generating and Processing in Telecommunications (2017), pp. 1–5.Google Scholar
  17. 17.
    D. Taylor, T.I. Pritchard, I.C. Butler, and P.S.A. Evans, Analog Integr. Circ. Signal Process. 8, 201 (1995).CrossRefGoogle Scholar
  18. 18.
    H.-G. Schweiger, O. Obeidi, O. Komesker, A. Raschke, M. Schiemann, C. Zehner, M. Gehnen, M. Keller, and P. Birke, Sensors 10, 5604 (2010).CrossRefGoogle Scholar
  19. 19.
    V.G. Kumar, N. Munichandraiah, and A.K. Shukla, J. Power Sources 63, 203 (1996).CrossRefGoogle Scholar
  20. 20.
    R.R. Nigmatullin, D. Baleanu, E. Dinch, Z. Ustundag, A.O. Solak, and R.V. Kargin, J. Comput. Theor. Nanosci. 7, 1 (2010).CrossRefGoogle Scholar
  21. 21.
    M.L. Ciurea, S. Lazanu, I. Stavaracher, A.-M. Lepadatu, V. Iancu, M.R. Mitroi, R.R. Nigmatullin, and C.M. Baleanu, J. Appl. Phys. 109, 013717 (2011).CrossRefGoogle Scholar
  22. 22.
    W. Ait Ahmed, M. Aggour, and F. Bennani, J. Energy Syst. 1, 56 (2017).CrossRefGoogle Scholar
  23. 23.
    N. Adhikari, B. Singh, and A. Lal Vyas, Int. J. Renew. Energy Technol. 6, 65 (2015).CrossRefGoogle Scholar
  24. 24.
    V.H. Johnson, A.A. Pesaran, and T. Sack, Temperature-dependent battery models for high-power lithium-ion batteries (Golden: National Renewable Energy Laboratory, 2001).Google Scholar
  25. 25.
    A. Rahmoun and H. Biechl, Przegl. Elektrotech. 88, 152 (2012).Google Scholar
  26. 26.
    L. Wang, J. Zhao, X. He, J. Gao, J. Li, Ch. Wan, and Ch. Jiang, Int. J. Electrochem. Sci. 7, 345 (2012).Google Scholar
  27. 27.
    G. Babu, N. Kalaiselvi, and D. Bhuvaneswari, J. Electron. Mater. 43, 1062 (2014).CrossRefGoogle Scholar
  28. 28.
    J. Zhu, K. Zeng, and L. Lu, Metall. Mater. Trans. A 44, 26 (2013).CrossRefGoogle Scholar
  29. 29.
    Y. Zhang, Ch.-Y. Wang, and X. Tang, J. Power Sources 196, 1513 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Kazan National Research Technical University named after A.N. Tupolev-KAIKazanRussia

Personalised recommendations