Skip to main content
Log in

Microstructural Evolution of Ni-Sn Transient Liquid Phase Sintering Bond during High-Temperature Aging

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

For high-temperature-resistant packaging of new generation power chip, a chip packaging simulation structure of Ni/Ni-Sn/Ni was bonded by a transient liquid-phase sintering process. High-temperature aging experiments were carried out to investigate joint heat stability. The microstructural evolution and mechanism during aging, and mechanical properties after aging were analyzed. The results show that the 30Ni-70Sn bonding layer as-bonded at 340°C for 240 min is mainly composed of Ni3Sn4 and residual Ni particles. When aged at 350°C, because of the difficulty of nucleation for Ni3Sn and quite slow growth of Ni3Sn2, the bonding layer is stable and the strength of that doesn’t change obviously with aging time. When aging temperature increased to 500°C, however, the residual Ni particles were gradually dissolved and the bonding layer formed a stable structure with dominated Ni3Sn2 after 36 h. Meanwhile, due to the volume shrinkage (4.43%) from Ni3Sn2 formation, a number of voids were formed. The shear strength shows an increase, resulting from Ni3Sn2 formation, but then it decreases slightly caused by voids. After aging at 500°C for 100 h, shear strength is still maintained at 29.6 MPa. In addition, the mechanism of void formation was analyzed and microstructural evolution model was also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. Neudeck, D.J. Spry, L.Y. Chen, G.M. Beheim, R.S. Okojie, C.W. Chang, R.D. Meredith, T.L. Ferrier, L.J. Evans, M.J. Krasowski, and N.F. Prokop, IEEE Electron Device Lett. 29, 456 (2008).

    Article  Google Scholar 

  2. T. Iwasaki, Y. Hoshino, K. Tsuzuki, H. Kato, T. Makino, M. Ogura, D. Takeuchi, H. Okushi, S. Yamasaki, and M. Hatano, IEEE Electron Device Lett. 34, 1175 (2013).

    Article  Google Scholar 

  3. R. Hedayati, L. Lanni, S. Rodriguez, B.G. Malm, A. Rusu, and C.M. Zetterling, IEEE Electron Device Lett. 35, 693 (2014).

    Article  Google Scholar 

  4. M. Le-Huu, H. Schmitt, S. Noll, M. Grieb, F.F. Schrey, A.J. Bauer, L. Frey, and H. Ryssel, Microelectron. Reliab. 51, 1346 (2011).

    Article  Google Scholar 

  5. D.R. Myers, K.B. Cheng, B. Jamshidi, R.G. Azevedo, D.G. Senesky, L. Chen, M. Mehregany, M.B.J. Wijesundara, and A.P. Pisano, J. Micro Nanolith Mem. 8, 021116-1 (2009).

    Google Scholar 

  6. H.S. Chin, K.Y. Cheong, and A.B. Ismail, Metall. Mater. Trans. B 41, 824 (2010).

    Article  Google Scholar 

  7. D. Maier, M. Alomari, N. Grandjean, J.F. Carlin, M.A. Diforte-Poisson, C. Dua, S. Delage, and E. Kohn, IEEE Electron Device Lett. 33, 985 (2012).

    Article  Google Scholar 

  8. I. Ohnuma, R. Kainuma, and K. Ishida, J. Min. Metall. B 48, 413 (2012).

    Article  Google Scholar 

  9. P.O. Quintero and F.P. Mccluskey, J. Microelectron. Electron. Packag. 6, 66 (2009).

    Article  Google Scholar 

  10. M. Fujino, H. Narusawa, Y. Kuramochi, E. Higurashi, T. Suga, T. Shiratori, and M. Mizukoshi, Jpn. J. Appl. Phys. 55, 04EC14-1 (2016).

    Article  Google Scholar 

  11. H. Greve and F.P. Mccluskey, in Proceedings of ASME 2013, Burlingame (2013).

  12. F.Q. Lang, H. Yamaguchi, H. Nakagawa, and H. Sato, in Proceedings of ICEPT-HDP 2012 (IEEE, Guilin, 2012).

  13. F.Q. Lang, H. Yamaguchi, H. Nakagawa, and H. Sato, J. Electrochem. Soc. 160, D315 (2013).

    Article  Google Scholar 

  14. S.F. Corbin and D.J. McIsaac, Mater. Sci. Eng. A Struct. 346, 132 (2003).

    Article  Google Scholar 

  15. H. Okamoto, J. Phase Equilib. Diffus. 29, 297 (2008).

    Article  Google Scholar 

  16. H.L. Feng, J.H. Huang, J. Zhang, X.D. Zhai, X.K. Zhao, and S.H. Chen, in Proceedings of EPTC2015 (IEEE, Singapore, 2015).

  17. H.L. Feng, J.H. Huang, J. Yang, S.K. Zhou, R. Zhang, and S.H. Chen, J. Electron. Mater. 46, 4152 (2017).

    Article  Google Scholar 

  18. H.J. Ji, M. Li, S. Ma, and M.Y. Li, Mater Design 108, 590 (2016).

    Article  Google Scholar 

  19. S. Bader, W. Gust, and H. Hieber, Acta Mater. 43, 329 (1995).

    Google Scholar 

  20. A. Lis, S. Kicin, F. Brem, and C. Leinenbach, J. Electron. Mater. 46, 1 (2017).

    Article  Google Scholar 

  21. K. Chu, Y. Sohn, and C. Moon, Scr. Mater. 109, 113 (2015).

    Article  Google Scholar 

  22. X.M. Li, S.F. Zhang, X.F. Wang, and J.X. Qi, J. Cent. South Univ. Technol. 15, 341 (2008).

    Article  Google Scholar 

  23. T. Chen, Z.X. Jiang, H. Peng, H.L. He, L.L. Wang, and Y.G. Wang, Strain 51, 190 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, H., Huang, J., Peng, X. et al. Microstructural Evolution of Ni-Sn Transient Liquid Phase Sintering Bond during High-Temperature Aging. J. Electron. Mater. 47, 4642–4652 (2018). https://doi.org/10.1007/s11664-018-6336-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6336-0

Keywords

Navigation