Parametric Study of Solder Flux Hygroscopicity: Impact of Weak Organic Acids on Water Layer Formation and Corrosion of Electronics

Abstract

The presence of solder flux residues on the printed circuit board assembly surface is an important factor contributing to humidity-related reliability issues that affect device lifetime. This investigation focuses on understanding the hygroscopic nature of typical wave solder flux activators—weak organic acids—under varied temperature conditions. In situ x-ray diffraction measurements assessed the effect of high temperature on the crystal structure of organic activators. The hygroscopicity studies were carried out under relative humidity (RH) levels varying from 30% to ∼ 99% and at temperatures 25°C, 40°C, and 60°C. Water absorption levels were determined using the gravimetric method, and the influence on reliability was assessed using electrochemical impedance and leak current measurements performed on the surface insulation resistance comb patterns. The corrosion studies were correlated with the hygroscopicity results and solubility data. Corrosion morphology was analysed using the optical microscopy and scanning electron microscopy. The results show that the hygroscopic nature of typical solder flux residue depends on its chemical structure and temperature. An increase of temperature shifts the critical RH level for water vapour absorption towards lower RH range, accelerating the formation of a conductive electrolyte and the occurrence of ion transport-induced electrochemical migration. The overall ranking of flux activators with the increasing order of aggressivity is: palmitic < suberic  < adipic < succinic < glutaric < dl-malic acid.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    H.H. Manko, Solders and Soldering. Materials, Design, Production, and Analysis for Reliable Bonding, 2nd ed. (New York: McGraw-Hill, 1979).

    Google Scholar 

  2. 2.

    C.J. Tautscher, Contamination Effects on Electronic Products (New York: CRC Press, 1991).

    Google Scholar 

  3. 3.

    M. Nasta and H.C. Peebles, Circuit World 21, 4 (1995).

    Article  Google Scholar 

  4. 4.

    J.F. Shipley, Weld. J. 54, 10 (1975).

    Google Scholar 

  5. 5.

    R. Ambat, M.S. Jellesen, D. Minzari, U. Rathinavelu, M.A.K. Johnsen, P. Westermann, and P. Møller, in Proceedings of the European Corrosion Congress EUROCORR (2009), paper no. 81s1.

  6. 6.

    K. Piotrowska, M.S. Jellesen, and R. Ambat, Solder. Surf. Mt. Technol. 29, 3 (2017).

    Article  Google Scholar 

  7. 7.

    M.L. Minges, Electronic Materials Handbook. Volume 1—Packaging, 1st ed. (Almere: ASM International, 1989).

    Google Scholar 

  8. 8.

    V. Verdingovas, M.S. Jellesen, and R. Ambat, J. Electron. Mater. 44, 4 (2015).

    Article  Google Scholar 

  9. 9.

    K. Piotrowska, H. Conseil, M.S. Jellesen, and R. Ambat, in Proceedings of the European Corrosion Congress EUROCORR (2014), paper no. 7495.

  10. 10.

    S. Zhan, M.H. Azarian, and M. Pecht, IEEE Trans. Device Mater. Reliab. 8, 2 (2008).

    Article  Google Scholar 

  11. 11.

    C. Peng, M.N. Chan, and C.K. Chan, Environ. Sci. Technol. 35, 22 (2001).

    Article  Google Scholar 

  12. 12.

    M.Z.H. Rozaini, in Atmospheric Aerosols—Regional Characteristics—Chemistry and Physics, ed. by H. Abdul-Razzak (InTech, 2012), pp. 323–346

  13. 13.

    K.M. Adams, J.E. Anderson, and Y.B. Graves, Circuit World 20, 41 (1994).

    Article  Google Scholar 

  14. 14.

    L. Van Campen, G.L. Amidon, and G. Zografi, J. Pharm. Sci. 72, 12 (1983).

    Article  Google Scholar 

  15. 15.

    M.J. Kontny and G. Zografi, J. Pharm. Sci. 74, 2 (1985).

    Article  Google Scholar 

  16. 16.

    M. Tencer, in 44th Electronic Components and Technology Conference Proceedings (1994), pp. 196–209

  17. 17.

    L.J. Mauer and M. Allan, Manuf. Confect. 95, 73 (2015).

    Google Scholar 

  18. 18.

    L.J. Mauer and L.S. Taylor, Pharm. Dev. Technol. 15, 6 (2010).

    Article  Google Scholar 

  19. 19.

    A.K. Salameh, L.J. Mauer, and L.S. Taylor, J. Food Sci. 71, 1 (2006).

    Article  Google Scholar 

  20. 20.

    G.W. Warren, P. Wynblatt, and M. Zamanzadeh, J. Electron. Mater. 18, 2 (1989).

    Article  Google Scholar 

  21. 21.

    J.D. Sinclair, J. Electrochem. Soc. 135, 3 (1988).

    Article  Google Scholar 

  22. 22.

    S. Zhan, M.H. Azarian, and M.G. Pecht, IEEE Trans. Electron. Packag. Manuf. 29, 3 (2006).

    Article  Google Scholar 

  23. 23.

    A.N. Hiatt, M.G. Ferruzzi, L.S. Taylor, and L.J. Mauer, J. Agric. Food Chem. 56, 15 (2008).

    Article  Google Scholar 

  24. 24.

    L.J. Mauer and L.S. Taylor, Annu. Rev. Food Sci. Technol. 1, 1 (2010).

    Article  Google Scholar 

  25. 25.

    A.H. Al-Muhtaseb, W.A.M. McMinn, and T.R.A. Magee, Food Bioprod. Process. 80, 2 (2002).

    Article  Google Scholar 

  26. 26.

    L. Treuel, S. Schulze, Th. Leisner, and R. Zellner, Faraday Discuss. 137, 265 (2008).

    Article  Google Scholar 

  27. 27.

    J.A. Jachim, G.B. Freeman, and L.J. Turbini, IEEE Trans. Components Packag. Manuf. Technol. Part B 20, 4 (1997).

    Article  Google Scholar 

  28. 28.

    B.A. Smith and L.J. Turbini, J. Electron. Mater. 28, 11 (1999).

    Google Scholar 

  29. 29.

    C. Dominkovics and G. Harsányi, in 29th International Spring Seminar on Electronics Technology: Nano Technologies for Electronics Packaging (2007), pp. 206–210

  30. 30.

    L. Zou and C. Hunt, Solder. Surf. Mt. Technol. 11, 2 (1999).

    Google Scholar 

  31. 31.

    S. Canumalla, K. Ludwig, R. Pedigo, and T. Fitzgerald, in Proceedings—Electronic Components and Technology Conference (2006), pp. 625–632

  32. 32.

    V. Verdingovas, M.S. Jellesen, and R. Ambat, Solder. Surf. Mt. Technol. 27, 4 (2015).

    Article  Google Scholar 

  33. 33.

    J.E. Sohn and U. Ray, Circuit World 21, 4 (1995).

    Article  Google Scholar 

  34. 34.

    Y. Zhou, L.J. Turbini, D. Ramjattan, B. Christian, and M. Pritzker, J. Electron. Mater. 42, 12 (2013).

    Google Scholar 

  35. 35.

    Toxnet—Toxicology Data Network (U.S. National Library of Medicine). https://toxnet.nlm.nih.gov/

  36. 36.

    L.M. John and J.W. McBain, J. Am. Oil Chem. Soc. 25, 2 (1948).

    Google Scholar 

  37. 37.

    I.D. Robb, Aust. J. Chem. 19, 12 (1966).

    Article  Google Scholar 

  38. 38.

    S.H. Yalkowsky, Y. He, and P. Jain, Handbook of Aqueous Solubility Data, 2nd ed. (Boca Raton: CRC Press, 2010).

    Google Scholar 

  39. 39.

    V. Verdingovas, M.S. Jellesen, R. Rizzo, H. Conseil, and R. Ambat, in Proceedings of the European Corrosion Congress EUROCORR (2013)

  40. 40.

    A. Apelblat and E. Manzurola, J. Chem. Thermodyn. 22, 3 (1990).

    Google Scholar 

  41. 41.

    N.C. Hill and V.P. Kuceski, U.S. Patent 2,824,134 A (1958)

  42. 42.

    M. Davies and D.M.L. Griffiths, Trans. Faraday Soc. 49, 1405 (1953).

    Article  Google Scholar 

  43. 43.

    A. Apelblat and E. Manzurola, J. Chem. Thermodyn. 19, 3 (1986).

    Google Scholar 

  44. 44.

    E.C. Attané and T.F. Doumani, Ind. Eng. Chem. 41, 9 (1949).

    Article  Google Scholar 

  45. 45.

    A.N. Gaivoronskii and V.A. Granzhan, Russ. J. Appl. Chem. 78, 3 (2005).

    Article  Google Scholar 

  46. 46.

    W.D. Bancroft and F.J.C. Butler, J. Phys. Chem. 36, 7 (1932).

    Google Scholar 

  47. 47.

    J.W. Mullin, Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 1, eds. J. Ulrich and T. Stelzer (Hoboken: Wiley, 2001), pp. 1–594.

    Google Scholar 

  48. 48.

    A. Apelblat and E. Manzurola, J. Chem. Thermodyn. 21, 9 (1989).

    Article  Google Scholar 

  49. 49.

    C. Marcolli, B. Luo, and T. Peter, J. Phys. Chem. A 108, 12 (2004).

    Article  Google Scholar 

  50. 50.

    O.D. Kurilenko, Kratkii spravochnik po khimii, 4th ed. (Kiyv: Naukova dumka, 1974).

    Google Scholar 

  51. 51.

    K. Piotrowska, R. Ud Din, M.S. Jellesen, and R. Ambat, IEEE Trans. Compon. Packag. Manuf. Technol. (2018). https://doi.org/10.1109/tcpmt.2018.2792047.

    Google Scholar 

  52. 52.

    J.T. Carstensen, Pharmaceutical Principles of Solid Dosage Forms (Lancaster: Technomic Pub, 1993).

    Google Scholar 

  53. 53.

    L. Ma, B. Sood, and M. Pecht, IEEE Trans. Device Mater. Reliab. 11, 1 (2011).

    Article  Google Scholar 

  54. 54.

    L.D. Angelo, V. Verdingovas, and L. Ferrero, in Proceedings of the European Corrosion Congress EUROCORR (2016)

  55. 55.

    H. Zhang, Ch. Xie, Z. Liu, J. Gong, Y. Bao, M. Zhang, H. Hao, B. Hou, and Q. Yin, Ind. Eng. Chem. Res. 52, 51 (2013).

    Google Scholar 

  56. 56.

    M.Z.H. Rozaini and P. Brimblecombe, Water Air Soil Pollut. 198, 1 (2009).

    Article  Google Scholar 

  57. 57.

    M. Dupas-Langlet, M. Benali, I. Pezron, K. Saleh, and L. Metlas-Komunjer, J. Food Eng. 115, 3 (2013).

    Article  Google Scholar 

  58. 58.

    G. Zografi and B. Hancock, Topics in Pharmaceutical Sciences, eds. D.J.A. Crommelin, K.K. Midha, and T. Nagai (Stuttgart: Medpharm Scientific Publishers, 1993), pp. 405–419.

  59. 59.

    M. Kuwata, W. Shao, R. Lebouteiller, and S.T. Martin, Atmos. Chem. Phys. 12, 12 (2012).

    Google Scholar 

  60. 60.

    P. Espeau, P. Negrier, and Y. Corvis, Cryst. Growth Des. 13, 2 (2013).

    Article  Google Scholar 

  61. 61.

    R.A. Lipasek, N. Li, S.J. Schmidt, L.S. Taylor, and L.J. Mauer, J. Agric. Food Chem. 61, 38 (2013).

    Article  Google Scholar 

  62. 62.

    F.D. Pope, B.J. Dennis-Smither, P.T. Griffiths, S.L. Clegg, and R.A. Cox, J. Phys. Chem. A 114, 16 (2010).

    Google Scholar 

  63. 63.

    S.T. Martin, Chem. Rev. 100, 9 (2000).

    Article  Google Scholar 

  64. 64.

    C.W. Harmon, R.L. Grimm, T.M. McIntire, M.D. Peterson, B. Njegic, V.M. Angel, A. Alshawa, J.S. Underwood, D.J. Tobias, R.B. Gerber, M.S. Gordon, J.C. Hemminger, and S.A. Nizkorodov, J. Phys. Chem. B 114, 7 (2010).

    Article  Google Scholar 

  65. 65.

    J.G. Kapsalis, Water Activity: Theory and Applications to Food (New York: Marcel Dekker Inc, 1987), pp. 173–213.

    Google Scholar 

  66. 66.

    R.D. Andrade, R. Lemus, and C.E. Perez, Vitae-Revista La Fac. Quim. Farm. 18, 3 (2011).

    Google Scholar 

  67. 67.

    J. Sun and P.A. Ariya, Atmos. Environ. 45, 5 (2006).

    Google Scholar 

  68. 68.

    L.J. Turbini, J.A. Jachim, G.B. Freeman, and J.F. Lane, in Proceedings of 1992 13th IEEE/CHMT International Electronic Manufacturing Symposium (1992), pp. 80–84

  69. 69.

    M. Tencer, Microelectron. Reliab. 48, 4 (2008).

    Article  Google Scholar 

  70. 70.

    M.N. Chan, S.M. Kreidenweis, and Ch.K. Chan, Environ. Sci. Technol. 42, 10 (2008).

    Article  Google Scholar 

  71. 71.

    M.T. Parsons, J. Mark, S.R. Lipetz, and A.K. Bertram, J. Geophys. Res. 109, 6 (2004).

    Article  Google Scholar 

  72. 72.

    P. Saxena and L.M. Hildemann, Environ. Sci. Technol. 31, 11 (1997).

    Article  Google Scholar 

  73. 73.

    I.R. Zamora, A. Tabazadeh, D.M. Golden, and M.Z. Jacobson, J. Geophys. Res. Atmos. 116, 23 (2011).

    Google Scholar 

  74. 74.

    M.E. Wise, J.D. Surratt, D.B. Curtis, J.E. Shilling, and M.A. Tolbert, J. Geophys. Res. Atmos. 108, D20 (2003).

    Google Scholar 

  75. 75.

    S.L. Clegg and J.H. Seinfeld, J. Phys. Chem. A 110, 17 (2006).

    Google Scholar 

  76. 76.

    C.N. Cruz and S.N. Pandis, Environ. Sci. Technol. 34, 20 (2000).

    Article  Google Scholar 

  77. 77.

    L. Treuel, S. Pederzani, and R. Zellner, Phys. Chem. Chem. Phys. 11, 36 (2009).

    Article  Google Scholar 

  78. 78.

    M. Song, C. Marcolli, U.K. Krieger, A. Zuend, and T. Peter, Atmos. Chem. Phys. Discuss. 11, 10 (2011).

    Article  Google Scholar 

  79. 79.

    A. Apelblat, M. Dov, J. Wisniak, and J. Zabicky, J. Chem. Thermodyn. 27, 1 (1995).

    Article  Google Scholar 

  80. 80.

    L. Yang, R.T. Pabalan, and M.R. Juckett, J. Solution Chem. 35, 4 (2006).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kamila Piotrowska.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Piotrowska, K., Ud Din, R., Grumsen, F.B. et al. Parametric Study of Solder Flux Hygroscopicity: Impact of Weak Organic Acids on Water Layer Formation and Corrosion of Electronics. Journal of Elec Materi 47, 4190–4207 (2018). https://doi.org/10.1007/s11664-018-6311-9

Download citation

Keywords

  • Corrosion
  • solder flux
  • humidity
  • hygroscopicity
  • climatic reliability of electronics