Journal of Electronic Materials

, Volume 47, Issue 7, pp 3951–3956 | Cite as

On the Samarium Substitution Effects in Y3−xSm x Al5O12 (x = 0.1–3.0)

  • Ramunas Skaudzius
  • Simas Sakirzanovas
  • Aivaras Kareiva


Yttrium aluminium garnet substituted by samarium Y3−xSm x Al5O12, (YSmAG, x = 0.1, 0.15, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5 and 3.0) was prepared by an aqueous sol–gel processing using etane-1,2-diol as complexing agent. The end products obtained at 1000°C in air were characterized by x-ray diffraction analysis, infrared spectroscopy (FT-IR) and scanning electron microscopy. It was demonstrated, however, that the total substitution of yttrium by samarium does not proceed in the YSmAG. The single cubic garnet phase was formed only at a low concentration of samarium (x = 0.1, 0.15, 0.25, 0.5, 0.75, 1.0). With further substitutional levels, if the amount of samarium was x = 1.5, 2.0, 2.5 and 3, respectively, the formation a of minor amount of side perovskite samarium aluminate SmAlO3 (SmAP) phase was observed. Surprisingly, when yttrium was totally replaced by the samarium (x = 3.0) the main synthesis product was SmAP. The possible formation of Sm3Al5O12 (SmAG) garnet was also investigated for the first time by variation of the temperature in the range of 780–835°C.


Aqueous systems garnets inorganic materials materials characterisation phase changes sol–gel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Skaudzius, T. Juestel, and A. Kareiva, Mater. Chem. Phys. 170, 229 (2016).CrossRefGoogle Scholar
  2. 2.
    J.F.C. Carreira, N.B. Sedrine, T. Monteiro, and L. Rino, J. Lumin. 183, 251 (2017).CrossRefGoogle Scholar
  3. 3.
    Y. Kim, K.B. Shim, M. Wu, and H.-K. Jung, J. Alloys Compd. 693, 40 (2017).CrossRefGoogle Scholar
  4. 4.
    X. Li, Q. Li, J. Wang, S. Yang, and H. Liu, Opt. Mater. 29, 528 (2007).CrossRefGoogle Scholar
  5. 5.
    A. de Pablos-Martín and T. Höche, Opt. Lasers Eng. 90, 1 (2017).CrossRefGoogle Scholar
  6. 6.
    L. Pavasaryte, A. Katelnikovas, V. Klimavicius, V. Balevicius, A. Krajnc, G. Mali, J. Plavec, and A. Kareiva, Phys. Chem. Chem. Phys. 19, 3729 (2017).CrossRefGoogle Scholar
  7. 7.
    Y. Tokudome, K. Fujita, K. Nakanishi, K. Kanamori, K. Miura, K. Hirao, and T. Hanada, J. Ceram. Soc. Jpn. 115, 925 (2007).CrossRefGoogle Scholar
  8. 8.
    A. Kareiva, Mater. Sci-Medzg. 17, 428 (2011).Google Scholar
  9. 9.
    F.A. Selim, A. Khamehchi, D. Winarski, and S. Agarwal, Opt. Mater. Express 6, 3704 (2016).CrossRefGoogle Scholar
  10. 10.
    X. Su, J. Zhou, G. Bai, J. Zhang, and P. Zhao, Ceram. Int. 42, 17497 (2016).CrossRefGoogle Scholar
  11. 11.
    C. Gheorghe, A. Lupei, S. Hău, F. Voicu, L. Gheorghe, and A.M. Vlaicu, J. Alloys Compd. 683, 547 (2016).CrossRefGoogle Scholar
  12. 12.
    L.D. Thu, D.Q. Trung, T.D. Lam, and T.X. Anh, J. Electron. Mater. 45, 2468 (2016).CrossRefGoogle Scholar
  13. 13.
    Q. Zhang, T. Lu, N. Wei, X. Chen, Z. Lu, L. Chen, J. Qi, Z. Huang, T. Hua, S. Wang, Y. Shi, and R. Chen, Mater. Lett. 188, 396 (2017).CrossRefGoogle Scholar
  14. 14.
    N. Dubnikova, E. Garskaite, J. Pinkas, P. Bezdicka, A. Beganskiene, and A. Kareiva, J. Sol-Gel. Sci. Technol. 55, 213 (2010).CrossRefGoogle Scholar
  15. 15.
    A. Katelnikovas, T. Jüstel, D. Uhlich, J.E. Jorgensen, S. Sakirzanovas, and A. Kareiva, Chem. Eng. Commun. 195, 758 (2008).CrossRefGoogle Scholar
  16. 16.
    M. Xu, Z. Zhang, J. Zhao, J. Zhang, and Z. Liu, J. Alloys Compd. 647, 1075 (2015).CrossRefGoogle Scholar
  17. 17.
    R. Skaudžius, D. Enseling, M. Skapas, A. Selskis, E. Pomjakushina, T. Jüstel, A. Kareiva, and C. Rüegg, Opt. Mater. 60, 467 (2016).CrossRefGoogle Scholar
  18. 18.
    A. Katelnikovas, P. Vitta, P. Pobedinskas, G. Tamulaitis, A. Žukauskas, J.E. Jørgensen, and A. Kareiva, J. Cryst. Growth 304, 361 (2007).CrossRefGoogle Scholar
  19. 19.
    N. Dubnikova, E. Garskaite, A. Beganskiene, and A. Kareiva, Opt. Mater. 33, 1179 (2011).CrossRefGoogle Scholar
  20. 20.
    N. Dubnikova, E. Garskaite, R. Raudonis, and A. Kareiva, Mater. Chem. Phys. 137, 660 (2012).CrossRefGoogle Scholar
  21. 21.
    S. Sakirzanovas, A. Katelnikovas, D. Dutczak, A. Kareiva, and T. Jüstel, J. Lumin. 131, 2255 (2011).CrossRefGoogle Scholar
  22. 22.
    S. Sakirzanovas, A. Katelnikovas, H. Bettentrup, A. Kareiva, and T. Jüstel, J. Lumin. 131, 1525 (2011).CrossRefGoogle Scholar
  23. 23.
    V. Lojpur, A. Egelja, J. Pantić, V. ĐorĐević, B. Matović, and M.D. Dramićanin, Sci. Sinter. 46, 75 (2014).CrossRefGoogle Scholar
  24. 24.
    M. Inoue, H. Otsu, H. Kominami, and T. Inui, J. Alloys Compd. 226, 146 (1995).CrossRefGoogle Scholar
  25. 25.
    A. Kareiva, C.J. Harlan, D.B. MacQueen, R.L. Cook, and A.R. Barron, Chem. Mater. 8, 2331 (1996).CrossRefGoogle Scholar
  26. 26.
    E. Garskaite, S. Sakirzanovas, A. Kareiva, J. Glaser, H.J. Meyer, and Z. Anorg, Allg. Chem. 633, 990 (2007).CrossRefGoogle Scholar
  27. 27.
    O. Fabrichnaya, G. Savinykh, T. Zienert, G. Schreiber, and H.J. Seifert, Int. J. Mater. Res. 103, 1469 (2012).CrossRefGoogle Scholar
  28. 28.
    M. Sertkol, S. Ballıkaya, F. Aydoğdu, A. Güler, M. Özdemir, and Y. Öner, J. Electron. Mater. 46, 73 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Ramunas Skaudzius
    • 1
  • Simas Sakirzanovas
    • 1
  • Aivaras Kareiva
    • 1
  1. 1.Institute of ChemistryVilnius UniversityVilniusLithuania

Personalised recommendations