Journal of Electronic Materials

, Volume 47, Issue 9, pp 5025–5032 | Cite as

Design and Photovoltaic Properties of Graphene/Silicon Solar Cell

  • Dikai Xu
  • Xuegong Yu
  • Lifei Yang
  • Deren Yang
Topical Collection: 17th Conference on Defects (DRIP XVII)
Part of the following topical collections:
  1. 17th Conference on Defects-Recognition, Imaging and Physics in Semiconductors (DRIP XVII)


Graphene/silicon (Gr/Si) Schottky junction solar cells have attracted widespread attention for the fabrication of high-efficiency and low-cost solar cells. However, their performance is still limited by the working principles of Schottky junctions. Modulating the working mechanism of the solar cells into a quasi pn junction has advantages, including higher open-circuit voltage (VOC) and less carrier recombination. In this study, Gr/Si quasi pn junction solar cells were formed by inserting a tunneling Al2O3 interlayer in-between graphene and silicon, which led to obtain the PCE up to 8.48% without antireflection or chemical doping techniques. Our findings could pave a new way for the development of Gr/Si solar cells.


Graphene silicon interface solar cells Schottky junction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008).CrossRefGoogle Scholar
  2. 2.
    K. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M.K.I. Grigorieva, S. Dubonos, and A. Firsov, Nature 438, 197 (2005).CrossRefGoogle Scholar
  3. 3.
    P.H. Ho, Y.T. Liou, C.H. Chuang, S.W. Lin, C.Y. Tseng, D.Y. Wang, C.C. Chen, W.Y. Hung, C.Y. Wen, and C.W. Chen, Adv. Mater. 27, 1724 (2015).CrossRefGoogle Scholar
  4. 4.
    D. Xu, X. Yu, L. Zuo, and D. Yang, RSC Adv. 5, 46480 (2015).CrossRefGoogle Scholar
  5. 5.
    X. Li and H. Zhu, Phys. Today 69, 46 (2016).CrossRefGoogle Scholar
  6. 6.
    E. Shi, H. Li, L. Yang, L. Zhang, Z. Li, P. Li, Y. Shang, S. Wu, X. Li, J. Wei, K. Wang, H. Zhu, D. Wu, Y. Fang, and A. Cao, Nano Lett. 13, 1776 (2013).CrossRefGoogle Scholar
  7. 7.
    X. Li, Z. Lv, and H. Zhu, Adv. Mater. 27, 6549 (2015).CrossRefGoogle Scholar
  8. 8.
    L. Yang, X. Yu, M. Xu, H. Chen, and D. Yang, J. Mater. Chem. A 2, 16877 (2014).CrossRefGoogle Scholar
  9. 9.
    L. Yang, X. Yu, W. Hu, X. Wu, Y. Zhao, and D. Yang, ACS Appl. Mater. Interfaces 7, 4135 (2015).CrossRefGoogle Scholar
  10. 10.
    H.C. Card and E.S. Yang, Appl. Phys. Lett. 29, 51 (1976).CrossRefGoogle Scholar
  11. 11.
    K. Jiao, X. Wang, Y. Wang, and Y. Chen, J. Mater. Chem. C 2, 7715 (2014).CrossRefGoogle Scholar
  12. 12.
    Y. Song, X. Li, C. Mackin, X. Zhang, W. Fang, T. Palacios, H. Zhu, and J. Kong, Nano Lett. 15, 2104 (2015).CrossRefGoogle Scholar
  13. 13.
    X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, and Y. Fang, Small 12, 595 (2016).CrossRefGoogle Scholar
  14. 14.
    L. Tao, Z. Chen, X. Li, K. Yan, and J.-B. Xu, npj 2D Mater. Appl. 1, 19 (2017).CrossRefGoogle Scholar
  15. 15.
    M.A. Green and R.B. Godfrey, Appl. Phys. Lett. 29, 610 (1976).CrossRefGoogle Scholar
  16. 16.
    K.K. Ng and H.C. Card, IEEE Trans. Electron Dev. 27, 716 (1980).CrossRefGoogle Scholar
  17. 17.
    A.S. Erickson, A. Zohar, and D. Cahen, Adv. Energy Mater. (2014). Scholar
  18. 18.
    N.G. Tarr, D.L. Pulfrey, and D.S. Camporese, IEEE Trans. Electron Dev. 30, 1760 (1983).CrossRefGoogle Scholar
  19. 19.
    J.K. Kleta and D.L. Pulfrey, Electron Dev. Lett. 1, 107 (1980).CrossRefGoogle Scholar
  20. 20.
    N.G. Tarr and D.L. Pulfrey, Appl. Phys. Lett. 34, 295 (1979).CrossRefGoogle Scholar
  21. 21.
    R.B. Godfrey and M.A. Green, IEEE Trans. Electron Dev. 27, 737 (1980).CrossRefGoogle Scholar
  22. 22.
    M. Grauvogl and R. Hezel, Prog. Photovolt. 6, 15 (1998).CrossRefGoogle Scholar
  23. 23.
    X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, Adv. Mater. 22, 2743 (2010).CrossRefGoogle Scholar
  24. 24.
    P.H. Ho, W.C. Lee, Y.T. Liou, Y.P. Chiu, Y.S. Shih, C.C. Chen, P.Y. Su, M.K. Li, H.L. Chen, C.T. Liang, and C.W. Chen, Energy Environ. Sci. 8, 2085 (2015).CrossRefGoogle Scholar
  25. 25.
    Y. Lin, X. Li, D. Xie, T. Feng, Y. Chen, R. Song, H. Tian, T. Ren, M. Zhong, K. Wang, and H. Zhu, Energy Environ. Sci. 6, 108 (2013).CrossRefGoogle Scholar
  26. 26.
    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff, Science 324, 1312 (2009).CrossRefGoogle Scholar
  27. 27.
    A.C. Ferrari and D.M. Basko, Nat. Nanotechnol. 8, 235 (2013).CrossRefGoogle Scholar
  28. 28.
    R. Chwang, B. Smith, and C. Crowell, Solid State Electron. 17, 1217 (1974).CrossRefGoogle Scholar
  29. 29.
    J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M.C.M.V. de Sanden, and W.M.M. Kessels, Prog. Photovolt. Res. Appl. 16, 461 (2008).CrossRefGoogle Scholar
  30. 30.
    B. Hoex, J.J.H. Gielis, M.C.M.V. de Sanden, and W.M.M. Kessels, J. Appl. Phys. 104, 113703 (2008).CrossRefGoogle Scholar
  31. 31.
    D.C. Gleason-Rohrer, B.S. Brunschwig, and N.S. Lewis, J. Phys. Chem. C 117, 18031 (2013).CrossRefGoogle Scholar
  32. 32.
    Y. Jung, X. Li, N.K. Rajan, A.D. Taylor, and M.A. Reed, Nano Lett. 13, 95 (2013).CrossRefGoogle Scholar
  33. 33.
    Y.W. Lam, Radio Electron. Eng. 51, 446 (1981).CrossRefGoogle Scholar
  34. 34.
    D.M. Stevens, J.C. Speros, M.A. Hillmyer, and C.D. Frisbie, J. Phys. Chem. C 115, 20806 (2011).CrossRefGoogle Scholar
  35. 35.
    N. Jensen, U. Rau, R.M. Hausner, S. Uppal, L. Oberbeck, R.B. Bergmann, and J.H. Werner, J. Appl. Phys. 87, 2639 (2000).CrossRefGoogle Scholar
  36. 36.
    J. Vanhellemont, E. Simoen, and C. Claeys, Appl. Phys. Lett. 66, 2894 (1995).CrossRefGoogle Scholar
  37. 37.
    X. Yu, X. Shen, X. Mu, J. Zhang, B. Sun, L. Zeng, L. Yang, Y. Wu, H. He, and D. Yang, Sci. Rep. 5, 17371 (2015).CrossRefGoogle Scholar
  38. 38.
    K.R. McIntosh and L.E. Black, J. Appl. Phys. 116, 014503 (2014).CrossRefGoogle Scholar
  39. 39.
    D. Xu, X. Yu, D. Gao, C. Li, M. Zhong, H. Zhu, S. Yuan, Z. Lin, and D. Yang, J. Mater. Chem. A 4, 10558 (2016).CrossRefGoogle Scholar
  40. 40.
    J. Buckley, B. De Salvo, D. Deleruyelle, M. Gely, G. Nicotra, S. Lombardo, J.F. Damlencourt, P. Hollinger, F. Martin, and S. Deleonibus, Microelectron. Eng. 80, 210 (2005).CrossRefGoogle Scholar
  41. 41.
    B. Hoex, J. Schmidt, R. Bock, P.P. Altermatt, M.C.M. van de Sanden, and W.M.M. Kessels, Appl. Phys. Lett. 91, 112107 (2007).CrossRefGoogle Scholar
  42. 42.
    M. Green, F. King, and J. Shewchun, Solid State Electron. 17, 551 (1974).CrossRefGoogle Scholar
  43. 43.
    X. Zhang, C. Xie, J. Jie, X. Zhang, Y. Wu, and W. Zhang, J. Mater. Chem. A 1, 6593 (2013).CrossRefGoogle Scholar
  44. 44.
    Y. Hao, M. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, and B. Fallahazad, Science 342, 720 (2013).CrossRefGoogle Scholar
  45. 45.
    J. Liu, W.T. Sun, D.P. Wei, X.F. Song, T.P. Jiao, S.X. He, W. Zhang, and C.L. Du, Appl. Phys. Lett. 106, 043904 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.State Key Lab of Silicon Materials and School of Materials Science and EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations