Skip to main content
Log in

Effect of Germanium Doping on the Production and Evolution of Divacancy Complexes in Neutron Irradiated Czochralski Silicon

  • Topical Collection: 17th Conference on Defects (DRIP XVII)
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Fourier transformed infrared absorption spectroscopy was used to investigate the effect of germanium (Ge) doping on the production and evolution of divacancy (V2) complexes in neutron irradiated Czochralski (Cz) silicon. The generation rates of V2 and vacancy–oxygen (VO) complexes were found to increase in Ge doped silicon as compared with the controlled Cz silicon, which could be ascribed to the increased availability of vacancies in Ge doped silicon arising from the temporary trapping of vacancies associated with the transient GeV pairs. Upon annealing, most of the V2 complexes were eliminated via the reaction between divacancy and self-interstitials (Sii) (V2 + Sii → V), while only 6–24% of V2 complexes were transformed into V2O complexes via the trapping of V2 complexes by interstitial oxygen (Oi), as V2 diffuses much faster than Oi. It was observed that Ge doping accelerated the V2 annihilation and in turn suppressed the transformation of V2 into V2O complexes. Those phenomena can be attributed to the increased availability of free self-interstitials in Ge doped silicon, which enhances the recombination of V2 with Sii. Additionally, an increased production of V3O complexes was observed in Ge doped silicon. The role of Ge atoms in the V3O formation was discussed in view of the two reactions V2 + VO → V3O and V2O + V → V3O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Chroneos, E.N. Sgourou, C.A. Londos, and U. Schwingenschlögl, Appl. Phys. Rev. 2, 021306 (2015).

    Article  Google Scholar 

  2. X. Yu, J. Chen, X. Ma, and D. Yang, Mater. Sci. Eng. R 74, 1 (2013).

    Article  Google Scholar 

  3. J. Vanhellemont, J. Chen, J. Lauwaert, H. Vrielinck, W. Xu, D. Yang, J. Rafi, H. Ohyama, and E. Simoen, J. Cryst. Growth 317, 8 (2011).

    Article  Google Scholar 

  4. J.H. Chen, D.R. Yang, H. Li, X.Y. Ma, D.X. Tian, L.B. Li, and D.L. Que, J. Cryst. Growth 306, 262 (2007).

    Article  Google Scholar 

  5. J. Vanhellemont, X.P. Zhang, W.B. Xu, J.H. Chen, X.Y. Ma, and D.R. Yang, J. Appl. Phys. 108, 123501 (2010).

    Article  Google Scholar 

  6. P. Wang, X.G. Yu, P. Chen, X.Q. Li, D.R. Yang, X. Chen, and Z.F. Huang, Sol. Energy Mater. Sol. Cells 95, 2466 (2011).

    Article  Google Scholar 

  7. X.G. Yu, P. Wang, and D.R. Yang, Appl. Phys. Lett. 97, 162107 (2010).

    Article  Google Scholar 

  8. H. Li, D.R. Yang, X.Y. Ma, X.G. Yu, and D.L. Que, J. Appl. Phys. 96, 4161 (2004).

    Article  Google Scholar 

  9. C.A. Londos, A. Andrianakis, V.V. Emtsev, and H. Ohyama, Semicond. Sci. Technol. 24, 075002 (2009).

    Article  Google Scholar 

  10. C.A. Londos, A. Andrianakis, E.N. Sgourou, V.V. Emtsev, and H. Ohyama, J. Appl. Phys. 109, 033508 (2011).

    Article  Google Scholar 

  11. B.G. Svensson, B. Mohadjeri, A. Hallén, J.H. Svensson, and J.W. Corbett, Phys. Rev. B 43, 2293 (1991).

    Article  Google Scholar 

  12. M.A. Trauwaert, J. Vanhellemont, H.E. Maes, A.M. Van Bavel, G. Langouche, and P. Clauws, Appl. Phys. Lett. 66, 3056 (1995).

    Article  Google Scholar 

  13. M. Mikelsen, J.H. Bleka, J.S. Christensen, E.V. Monakhov, B.G. Svensson, J. Härkönen, and B.S. Avset, Phys. Rev. B 75, 155202 (2007).

    Article  Google Scholar 

  14. N. Ganagona, L. Vines, E.V. Monakhov, and B.G. Svensson, J. Appl. Phys. 115, 034514 (2014).

    Article  Google Scholar 

  15. R. Poirier, V. Avalos, S. Dannefaer, F. Schiettekatte, and S. Roorda, Physica B 340–342, 609 (2003).

    Article  Google Scholar 

  16. X.G. Yu, L. Chen, P. Chen, and D.R. Yang, Appl. Phys. Express 5, 021302 (2012).

    Article  Google Scholar 

  17. J.W. Corbett, G.D. Watkins, R.M. Chrenko, and R.S. Mc Donald, Phys. Rev. 121, 1015 (1961).

    Article  Google Scholar 

  18. R. Poirier, V. Avalos, S. Dannefaer, F. Schiettekatte, M. Lalancette, and J. Zikovsky, Nucl. Instrum. Methods B 206, 85 (2003).

    Article  Google Scholar 

  19. L.J. Lindström, G.S. Oehrlein, A.E. Jaworowski, and J.W. Corbett, J. Appl. Phys. 53, 8686 (1982).

    Article  Google Scholar 

  20. C.A. Londos, E.N. Sgourou, and A. Chroneos, J. Appl. Phys. 112, 123517 (2012).

    Article  Google Scholar 

  21. N.V. Sarlis, C.A. Londos, and L.G. Fytros, J. Appl. Phys. 81, 1645 (1997).

    Article  Google Scholar 

  22. L.I. Murin, B.G. Svensson, J.L. Lindström, V.P. Markevich, and C.A. Londos, Physica B 404, 4568 (2009).

    Article  Google Scholar 

  23. L.I. Murin, B.G. Svensson, J.L. Lindström, V.P. Markevich, and C.A. Londos, Solid State Phenom. 156–158, 129 (2010).

    Google Scholar 

  24. A. Borghesi, B. Pivac, A. Sassella, and A. Stella, J. Appl. Phys. 77, 4169 (1995).

    Article  Google Scholar 

  25. A. Chroneos, R.W. Grimes, and H. Bracht, J. Appl. Phys. 105, 016102 (2009).

    Article  Google Scholar 

  26. P. Dong, X.G. Yu, L. Chen, X.Y. Ma, and D.R. Yang, J. Appl. Phys. 122, 095704 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuegong Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, P., Yang, P., Yu, X. et al. Effect of Germanium Doping on the Production and Evolution of Divacancy Complexes in Neutron Irradiated Czochralski Silicon. J. Electron. Mater. 47, 5019–5024 (2018). https://doi.org/10.1007/s11664-018-6266-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6266-x

Keywords

Navigation