Advertisement

Journal of Electronic Materials

, Volume 47, Issue 7, pp 3876–3890 | Cite as

Dielectric, Piezoelectric and Variable Range Hopping Conductivity Studies of Bi0.5(Na, K)0.5TiO3 Ceramics

  • Srinivas Pattipaka
  • A. R. James
  • Pamu Dobbidi
Article
  • 60 Downloads

Abstract

We report a detailed study on the structural, microstructural, piezoelectric, dielectric and AC conductivity of Bi0.5(Na1−xK x )0.5TiO3 (BNKT; x = 0, 0.1, 0.2 and 0.3) ceramics fabricated by a conventional solid-state reaction method. XRD and Raman analysis revealed that Bi0.5(Na0.8K0.2)0.5TiO3 and Bi0.5(Na0.7K0.3)0.5TiO3 ceramics exhibit a mixture of rhombohedral and tetragonal structures. The segregation of K at the grain boundary was confirmed by transmission electron microscopy and is related to typical microstructural local compositional mapping analysis. Two transitions, at ∼ 330°C and 150°C, observed from the ε′ versus T curve in pure BNT are associated with the ferroelectric tetragonal to paraelectric cubic phase (TC) and ferroelectric rhombohedral to ferroelectric tetragonal phase (Td), respectively. Further, the TC and Td shifted towards the lower temperature with a rise in K concentration. Frequency dispersion of Td and TC suggest that BNKT ceramics exhibit a weak relaxor behavior with diffuse phase transition, which is confirmed by Uchino–Nomura criteria and the Vogel–Fulcher law. The AC resistivity ρac(T) follows the Mott variable range hopping conduction mechanism. A significant enhancement of dielectric and piezoelectric properties were observed for x = 0.2 system: dielectric constant (ε′ = 1273), dielectric loss (tanδ = 0.047) at 1 kHz, electromechanical coupling coefficients (k ij : k33, k t  ∼ 60%, k31 ∼ 62% and kp ∼ 46%), elastic coupling coefficients (\( S_{33}^{D} \) = 6.40 × 10−13 m2/N and \( S_{33}^{E} \) = 10.06 × 10−13 m2/N) and piezoelectric constants (d33 = 64.23 pC/N and g33 = 5.69 × 10−3 Vm/N).

Keywords

Dielectric properties conductivity variable range hopping density of states resonance and anti-resonance frequency piezoelectric properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge the financial support from the Department of Atomic Energy, Board of Research in Nuclear Sciences (DAE BRNS) [37(1)/14/33/2015/BRNS]. We are also grateful to the Centre of Nanotechnology, Indian Institute of Technology Guwahati, India, for FESEM measurement facilities. The authors also thank the Director, DMRL, Hyderabad, India, for permission to use experimental facilities for some measurements.

References

  1. 1.
    B. Jaffe, W.R. Cook, and H. Jaffe, Piezoelectric Ceramics (London: Academic, 1971).Google Scholar
  2. 2.
    Y.J. Zhang, R.Q. Chu, Z.J. Xu, J.G. Hao, Q. Chen, P. Fu, W. Li, G.R. Li, and Q.R. Yin, J. Alloys Compd. 502, 341 (2010).CrossRefGoogle Scholar
  3. 3.
    J. Rodel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, and D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009).CrossRefGoogle Scholar
  4. 4.
    J.K. Lee, K.S. Hong, C.K. Kim, and S.E. Park, J. Appl. Phys. 91, 4538 (2002).CrossRefGoogle Scholar
  5. 5.
    European Council, Off. J. Eur. Union L37, 19 (2003).CrossRefGoogle Scholar
  6. 6.
    Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003, Off. J. Eur. Union, L37/19 (2003).Google Scholar
  7. 7.
    K. Matsuo, R.J. Xie, Y. Akimune, and T. Sugiyama, J. Ceram. Soc. Jpn. 110, 491 (2002).CrossRefGoogle Scholar
  8. 8.
    P. Mahesh, S. Thota, and D. Pamu, IEEE Trans. Dielectr. Electr. Insul. 22, 3668 (2015).CrossRefGoogle Scholar
  9. 9.
    Y. Hiruma, R. Aoyagi, H. Nagata, and T. Takenaka, Jpn. J. Appl. Phys. 44, 5040 (2005).CrossRefGoogle Scholar
  10. 10.
    G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, and N.N. Krainik, Sov. Phys. Solid State 2, 2651 (1961).Google Scholar
  11. 11.
    T. Takenaka, K. Maruyama, and K. Sakata, Jpn. J. Appl. Phys. Part 30, 2236 (1991).CrossRefGoogle Scholar
  12. 12.
    G.H. Lee, Y.H. Kwon, and J.H. Koh, Ceram. Int. 41, 7897 (2015).CrossRefGoogle Scholar
  13. 13.
    T. Takenaka, K. Maruyama, and K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991).CrossRefGoogle Scholar
  14. 14.
    P. Laoratanakul, R. Yimnirun, and S. Wongsaenmai, Curr. Appl. Phys. 11, S161 (2011).CrossRefGoogle Scholar
  15. 15.
    T. Takenaka, T. Okuda, and K. Takegahara, Ferroelectrics 196, 175 (1997).CrossRefGoogle Scholar
  16. 16.
    B. Parija, S.K. Rout, L.S. Cavalcante, A.Z. Simoes, S. Panigrahi, E. Longo, and N.C. Batista, Appl. Phys. A 109, 715 (2012).CrossRefGoogle Scholar
  17. 17.
    H. Yan, D. Xiao, P. Yu, J. Zhu, D. Lin, and G. Lin, Mater. Des. 26, 474 (2005).CrossRefGoogle Scholar
  18. 18.
    S. Zhang, R. Xia, L. Lebrun, D. Anderson, and T.R. Shrout, Mater. Lett. 59, 3471 (2005).CrossRefGoogle Scholar
  19. 19.
    A. Moosavi, M.A. Bahrevar, A.R. Aghaei, P. Ramos, M. Alguero, and H. Amorin, J. Phys. D Appl. Phys. 47, 055304 (2014).CrossRefGoogle Scholar
  20. 20.
    K. Yoshii, Y. Hiruma, H. Nagatha, and T. Takenaka, Jpn. J. Appl. Phys. 45, 4493 (2006).CrossRefGoogle Scholar
  21. 21.
    Y.R. Zhang, J.F. Li, B.P. Zhang, and C.E. Pheng, J. Appl. Phys. 103, 074109 (2008).CrossRefGoogle Scholar
  22. 22.
    L. Liu, H. Fan, S. Ke, and X. Chen, J. Alloys Compd. 458, 504 (2008).CrossRefGoogle Scholar
  23. 23.
    J. Kreisel, A.M. Glazer, G. Jones, P.A. Thomas, L. Abello, and G. Lucazeau, J. Phys. Condens. Matter 12, 3267 (2000).CrossRefGoogle Scholar
  24. 24.
    M.K. Niranjan, T. Karthik, S. Asthana, J. Pan, and U.V. Waghmare, J. Appl. Phys. 113, 194106 (2013).CrossRefGoogle Scholar
  25. 25.
    D. Rout, K.S. Moon, S.J.L. Kang, and I.W. Kim, J. Appl. Phys. 108, 084102 (2010).CrossRefGoogle Scholar
  26. 26.
    J. Kreisel, A.M. Glazer, P. Bouvier, and G. Lucazeau, Phys. Rev. B 63, 174106 (2001).CrossRefGoogle Scholar
  27. 27.
    V. Pal, O.P. Thakur, and R.K. Dwivedi, J. Phys. D Appl. Phys. 48, 055301 (2015).CrossRefGoogle Scholar
  28. 28.
    K.I. Kakimoto, K. Akao, Y. Guo, and H. Ohsato, Jpn. J. Appl. Phys. 44, 7064 (2005).CrossRefGoogle Scholar
  29. 29.
    D. Lin, K.W. Kwok, and H.L.W. Chan, J. Phys. D Appl. Phys. 40, 6778 (2007).CrossRefGoogle Scholar
  30. 30.
    Y.R. Zhang, J.F. Li, and B.P. Zhang, J. Am. Ceram. Soc. 91, 2716 (2008).CrossRefGoogle Scholar
  31. 31.
    P. Fu, Z. Xu, R. Chu, W. Li, Q. Xie, Y. Zhang, and Q. Chen, J. Alloys Compd. 508, 546 (2010).CrossRefGoogle Scholar
  32. 32.
    P. Vijayeta, R.K. Dwivedi, and O.P. Thakur, Mater. Res. Bull. 51, 189 (2014).CrossRefGoogle Scholar
  33. 33.
    Z.P. Yang, Y.T. Hou, B. Liu, and L.L. Wei, Ceram. Int. 35, 1423 (2009).CrossRefGoogle Scholar
  34. 34.
    E.M. Anton, W. Jo, D. Damjanovic, and J. Rodel, J. Appl. Phys. 110, 094108 (2011).CrossRefGoogle Scholar
  35. 35.
    X. Chou, J. Zhai, H. Jiang, and X. Yao, J. Appl. Phys. 102, 084106 (2007).CrossRefGoogle Scholar
  36. 36.
    A.A. Bokov and Z.G. Ye, J. Mater. Sci. 41, 31 (2006).CrossRefGoogle Scholar
  37. 37.
    V. Bobnar, J. Holc, M. Hrovat, and M. Kosec, J. Appl. Phys. 101, 074103 (2007).CrossRefGoogle Scholar
  38. 38.
    N.K. Karan, R.S. Katiyar, T. Maiti, and A.S. Bhalla, J. Raman Spectrosc. 40, 370 (2009).CrossRefGoogle Scholar
  39. 39.
    S. Said and J.P. Mercurio, J. Eur. Ceram. Soc. 21, 1333 (2001).CrossRefGoogle Scholar
  40. 40.
    L.E. Cross, Ferroelectrics 151, 305 (1994).CrossRefGoogle Scholar
  41. 41.
    L.E. Cross, Ferroelectrics 76, 241 (1987).CrossRefGoogle Scholar
  42. 42.
    V.V. Shvartsman and D.C. Lupascu, J. Am. Ceram. Soc. 95, 1 (2012).CrossRefGoogle Scholar
  43. 43.
    K. Uchino and S. Nomura, Ferroelectrics 44, 55 (1982).CrossRefGoogle Scholar
  44. 44.
    P. Srinivas, P. Mahesh, and D. Pamu, Ceram. Int. 43, S151 (2017).CrossRefGoogle Scholar
  45. 45.
    Z. Yuan, O.U. Seyit, R. Aditya, T. Safakcan, A. Ahmed, and U. Kenji, Jpn. J. Appl. Phys. 48, 041401 (2009).CrossRefGoogle Scholar
  46. 46.
    K. Kumar and B. Kumar, Ceram. Int. 38, 1157 (2012).CrossRefGoogle Scholar
  47. 47.
    J.S. Kima, C.W. Ahn, H.J. Lee, I.W. Kim, and B.M. Jin, Ceram. Int. 30, 1459 (2004).CrossRefGoogle Scholar
  48. 48.
    R. Pirc and R. Blinc, Phys. Rev. B. 76, 020101(R) (2007).CrossRefGoogle Scholar
  49. 49.
    R.M. Hill, Phys. Stat. Sol. (a) 34, 601 (1976).CrossRefGoogle Scholar
  50. 50.
    J. Hauser, Phys. Rev. B 9, 2623 (1974).CrossRefGoogle Scholar
  51. 51.
    S. Ke, P. Lin, H. Fan, H. Huang, and X. Zeng, J. Appl. Phys. 114, 104106 (2013).CrossRefGoogle Scholar
  52. 52.
    H. Han, C. Davis III, and J.C. Nino, J. Phys. Chem. C 118, 9137 (2014).CrossRefGoogle Scholar
  53. 53.
    I. Rawal and A. Kaur, J. Appl. Phys. 115, 043717 (2014).CrossRefGoogle Scholar
  54. 54.
    S. De, S. Niranjana, B.S. Satyanarayana, and M. Rao, J. Optoelectron. Adv. Mater. Rapid Commun. 3, 1365 (2009).Google Scholar
  55. 55.
    Standards Committee of the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society, An American National Standard: IEEE Standard on Piezoelectricity, ANSI/IEEE Std. 176 (New York: The Institute of Electrical and Electronics Engineers, 1987).Google Scholar
  56. 56.
    M. Kostan, A. Mohimi, C. Nageswaran, V. Kappatos, L. Cheng, T.-H. Gan, L. Wrobel, and C. Selcuk, in IOP Conference Series: Mater. Sci. and Eng., B (2016), p. 012008.Google Scholar
  57. 57.
    S. Mahboob, G. Prasad, and G.S. Kumar, Ferroelectrics 445, 182 (2013).CrossRefGoogle Scholar
  58. 58.
    S. Mahboob, Rizwana, G. Prasad, and G.S. Kumar, Ferroelectrics 507, 102 (2017).CrossRefGoogle Scholar
  59. 59.
    T. Takenaka and H. Nagata, J. Eur. Ceram. Soc. 25, 2693 (2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Srinivas Pattipaka
    • 1
  • A. R. James
    • 2
  • Pamu Dobbidi
    • 1
  1. 1.Department of PhysicsIndian Institute of Technology GuwahatiGuwahatiIndia
  2. 2.Ceramics and Composites GroupDefence Metallurgical Research LaboratoryHyderabadIndia

Personalised recommendations